这5个有趣的Python库带你花式编码!

   日期:2024-01-17     浏览:39    评论:0    

图源:unsplash  

Python是如今最流行的编程语言之一,这点也给它本身带来很多好处,其中之一就是,为了方便进行程序开发,它拥有了大量优秀的库,如Pandas、Numpy、Matplotlib、SciPy等。

不过,本文不打算介绍那些以实用为主要“卖点”的库,而是带你走进一些极为有趣的库,这些库可以展示Python的另一面,也恰恰证明了Python社区的繁荣发展。

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789

1. Bashplotlib

 

图源: Unsplash

Bashplotlib是一个Python库,使得能够在命令行stdout环境中绘制数据。老实说,第一次看到这个库的时候,笔者很疑惑,我们为什么可能会需要这样的库?

很快笔者就意识到,当没有任何可用的GUI时,它可能会很有用。这个情况可不太常见,它引起了笔者的好奇心。我这是一个非常有趣的Python库。

使用pip就可以很容易地安装Bashplotlib:

<span>pipinstall bashplotlib</span>

来看一些例子。在下面的代码中,导入了numpy来生成一些随机数组,当然还有bashplotlib。

importnumpy as np
from bashplotlib.histogram import plot_hist arr = np.random.normal(size=1000, loc=0, scale=1) 

plot_hist是bashplotlib的一个函数,用于在直方图中绘制一维数据,就像plt.hist在Matplotlib中的功能一样。然后,使用Numpy生成一个包含1,000个服从正态分布的数字组成的随机数组。在此之后,可以很容易地绘制这些数据:

<span>plot_hist(arr, bincount=50)</span>

输出就像这样:

你也可以从文本文件中用散点图来绘制数据。

2.  PrettyTable

Bashplotlib在命令行环境中绘制数据,而PrettyTable以一种好看的格式绘制输出结果表。

同样的,使用pip可以很容易地安装这个库:

<span>pipinstall prettytable</span>

首先,导入这个库:

<span>from prettytable import PrettyTable</span>

然后,使用PrettyTable创建表格对象:

<span>table =PrettyTable()</span>

一旦创建表格对象,就可以开始添加域和数据列了:

table.field_names= [ Name ,  Age ,  City ]
table.add_row(["Alice", 20, "Adelaide"]) table.add_row(["Bob", 20, "Brisbane"]) table.add_row(["Chris", 20, "Cairns"]) table.add_row(["David", 20, "Sydney"]) table.add_row(["Ella", 20, "Melbourne"]) 

只需打印就可显示表格:

<span>print(table)</span>

PrettyTable还支持改进表格样式,几乎包括可以想到的任何方面。例如,我们可以右对齐表格中的文字:

<span>table.align= r </span>

<span>print(table)</span>

按列对表格排序:

<span>table.sortby= &quot;City&quot;</span>

<span>print(table)</span>

甚至可以得到表格的HTML字符串

3. Colorama

想为命令行应用程序添加一些颜色吗?Colorama可以很容易地输出你喜欢的颜色。

图源:unsplash  

再一次使用pip安装Colorama:

<span>pipinstall colorama</span>

Colorama支持在“前景”(文本颜色)、“背景”(背景颜色)和“风格”(额外的风格的颜色)中支持渲染输出颜色。可以导入:

<span>fromcolorama import Fore, Back, Style</span>

首先使用黄色显示一些警告:

然后尝试使用红色背景显示一些错误:

<span>print(Back.RED+ Fore.WHITE + &quot;This is an error!&quot;)</span>

红色太艳了。使用“dim”风格。

<span>print(Back.RESET+ Style.DIM + &quot;Another error!&quot;)</span>

此处设置“RESET”改变背景颜色为默认。

“DIM”样式使字体不可见。若想把所有东西都恢复正常时,只需将“Style”设置为“RESET_ALL”:

<span>print(Style.RESET_ALL)</span>

4. FuzzyWuzzy

很多时候,你可能想为程序实现一个“模糊”搜索功能,FuzzyWuzzy提供了一个开箱即用的轻量级解决方案。

和再去一样,使用pip安装:

<span>pip installfuzzywuzzy</span>

导入库:

<span>fromfuzzywuzzy import fuzz</span>

做个简单的测试:

<span>fuzz.ratio(&quot;Let’sdo a simple test&quot;, &quot;Let us do a simple test&quot;)</span>

如结果所示,“93”表示这两个字符串有93%的相似性,这相当高了。

当有一个字符串列表,想要搜索所有的字符串,FuzzyWuzzy将帮助提取最相关的字符串及其相似性。

<span>fromfuzzywuzzy import processchoices = [&quot;Data Visualisation&quot;, &quot;DataVisualization&quot;, &quot;Customised Behaviours&quot;, &quot;CustomizedBehaviors&quot;]process.extract(&quot;data visulisation&quot;, choices,limit=2)</span>

<span>process.extract(&quot;custom behaviour&quot;, choices, limit=2)</span>

在上面的示例中,参数limit告诉FuzzyWuzzy提取“前n个”结果。否则将获得具有所有这些原始字符串及其相似性分数的元组列表。

5. TQDM

图源:unsplash  

你通常会使用Python来开发命令行工具吗?如果是的话一定要试试这个库。当CLI工具处理一些耗时的事情时,它将通过显示一个进度条来指示完成了多少工作,帮助你了解情况。

老办法,使用pip安装:

<span>pipinstall tqdm</span>

当for循环使用range函数时,只是把它替换为tqdm中的trange即可。

<span>fromtqdm import trangefor i in trange(100):</span>

<span> sleep(0.01)</span>

一般来说,对列表做循环。使用tqdm也很容易。

fromtqdm import tqdm
for e in tqdm([1,2,3,4,5,6,7,8,9]): sleep(0.5) # Suppose we are doing something with theelements 

tqdm不仅适用于命令行环境,还适用于iPython / Jupyter Notebook。

图源: https://github.com/tqdm/tqdm

在看到Bashplotlib库之前,必须说笔者从来没有在命令行环境中绘制数据的想法。人类发展思想和创造力的多样性从来没有停止过,这让一切事物变得有趣起来。何不去试试呢?

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服