分类与监督学习,朴素贝叶斯分类算法

   日期:2024-01-17     浏览:44    评论:0    

1.理解分类与监督学习、聚类与无监督学习。

(1)简述分类与聚类的联系与区别。

联系:两者都是对于想要分析的目标点,都会在数据集中寻找它最近的点,即二者都用到了NN算法。

区别:

  分类:从机器学习的观点,分类技术是一种有指导的监督学习,即每个训练样本的数据对象已经有类标识,通过学习可以形成表达数据对象与类标识间对应的知识。

  聚类:在机器学习中,聚类是一种无指导的无监督学习。也就是说,聚类是在预先不知道欲划分类的情况下,根据信息相似度原则进行信息聚类的一种方法。

(2)简述什么是监督学习与无监督学习。

监督学习:表示机器学习的数据是带标记的,这些标记可以包括数据类别、数据属性及特征点位置等。这些标记作为预期效果,不断修正机器的预测结果。

无监督学习:表示机器学习的数据是没有标记的。机器从无标记的数据中探索并推断出潜在的联系。

2.朴素贝叶斯分类算法实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

 

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

朴素贝叶斯公式:

 

 计算:

p(实例) = 8/20 * 5/20 * 10/20 * 4/20 * 9/20 * 6/20 = 54/40000

p(心梗 / 实例) = ( 7/16 * 4/16 * 9/16 * 3/16 * 7/16 * 4/16 ) * 16/20 / ( 54/40000 ) ≈ 75%

p(不稳定性心绞痛 / 实例) = ( 1/4 * 1/4 * 1/4 * 1/4 * 2/4 * 2/4 * 1/4 ) * 4/20 / (54 / 40000) ≈ 15%

由于p(心梗 / 实例) > p(不稳定性心绞痛 / 实例) ,所以该实例最可能患心梗

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

  • 高斯分布型
  • 多项式型
  • 伯努利型

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

##朴素贝叶斯算法
# 导入朴素贝叶斯模型
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
# 模型交叉验证
from sklearn.model_selection import cross_val_score
# 导入鸢尾花数据库
from sklearn.datasets import load_iris

# 导入鸢尾花数据集
iris = load_iris()
x = iris['data']
y = iris['target']

### 高斯分布型
# 构建模型
GNB_model = GaussianNB()
# 训练模型
GNB_model.fit(x, y)
# 预测模型
GNB_pre = GNB_model.predict(x)
print("高斯分布型:")
print("模型准确率:", sum(GNB_pre == y)/len(x))
# 模型交叉验证得分
GNB_score = cross_val_score(GNB_model, x, y, cv=10)
print("平均精度:%.2f\n" % GNB_score.mean())

### 多项式型
# 构建模型
MNB_model = MultinomialNB()
# 训练模型
MNB_model.fit(x, y)
# 预测模型
MNB_pre = MNB_model.predict(x)
print("多项式型:")
print("准确率:", sum(MNB_pre == y)/len(x))
# 模型交叉验证得分
MNB_score = cross_val_score(MNB_model, x, y, cv=10)
print("平均精度:%.2f\n" % MNB_score.mean())

### 伯努利型
BNB_model = BernoulliNB()  # 构建模型
BNB_model.fit(x, y)  # 训练模型
BNB_pre = BNB_model.predict(x)  # 预测模型
print("伯努利型:")
print("模型准确率:", sum(BNB_pre == y)/len(x))
# 模型交叉验证得分
BNB_score = cross_val_score(BNB_model, x, y, cv=10)
print("平均精度:%.2f\n" % BNB_score.mean())

 

 

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服