容积卡尔曼滤波CKF—目标跟踪中的应用(算法部分)
原创不易,路过的各位大佬请点个赞
作者:823618313@qq.com
备注:
容积卡尔曼滤波算法;CKF;Cubature Kalman Filter
两种CKF算法:加性噪声CKF和非加性噪声CKF
本博客主要讲解“加性噪声条件下的容积卡尔曼滤波算法”推导结果
matlab实现;
目标跟踪仿真
Case: 二维目标跟踪情况和三维目标跟踪情况
代码下载地址如下(分别为二维情形和三维情形)
容积卡尔曼滤波思考:
无迹卡尔曼滤波UKF—目标跟踪中的应用
- 容积卡尔曼滤波CKF—目标跟踪中的应用(算法部分)
-
- 1、带加性噪声的容积卡尔曼滤波算法CKF
-
- 1.1 问题描述(离散时间非线性系统描述)
1、带加性噪声的容积卡尔曼滤波算法CKF
1.1 问题描述(离散时间非线性系统描述)
考虑带加性噪声的一般非线性系统模型,
x k = f ( x k − 1 ) + w k − 1 z k = h ( x k ) + v k (1) x_k=f(x_{k-1}) +w_{k-1} \\ z_k=h(x_k)+v_k \tag{1} xk=f(xk−1)+wk−1zk=h(xk)+vk(1)
其中 x k x_k xk为 k k k时刻的目标状态向量。 z k z_k zk为 k k k时刻量测向量(传感器数据)。这里不考虑控制器 u k u_k uk。 w k {w_k} wk和 v k {v_k} vk分别是过程噪声序列和量测噪声序列,并假设 w k w_k wk和 v k v_k vk为零均值高斯白噪声,其方差分别为 Q k Q_k Qk和 R k R_k Rk的高斯白噪声,即 w k ∼ ( 0 , Q k ) w_k\sim(0,Q_k) wk∼(0,Qk), v k ∼ ( 0 , R k ) v_k\sim(0,R_k) vk∼(0,Rk),且满足如下关系(线性高斯假设)为:
E [ w i v j ′ ] = 0 E [ w i w j ′ ] = 0 i ≠ j E [ v i v j ′ ] = 0 i ≠ j \begin{aligned} E[w_iv_j'] &=0\\ E[w_iw_j'] &=0\quad i\neq j \\ E[v_iv_j'] &=0\quad i\neq j \end{aligned} E[wivj′]E[wiwj′]E[vivj′]=0=0i=j=0i=j