一、简介
1 模拟退火算法的应用背景
模拟退火算法提出于1982年。Kirkpatrick等人首先意识到固体退火过程与优化问题之间存在着类似性;Metropolis等人对固体在恒定温度下达到热平衡过程的模拟也给他们以启迪。通过把Metropolis 算法引入到优化过程中,最终得到一种对 Metropolis 算法进行迭代的优化算法,这种算法类似固体退火过程,称之为“模拟退火算法”。
模拟退火算法是一种适合求解大规模组合优化问题的随机搜索算法。目前,模拟退火算法在求解 TSP,VLSI 电路设计等组合优化问题上取得了令人满意的结果。将模拟退火算法同其它的计算智能方法相结合,应用到各类复杂系统的建模和优化问题中也得到了越来越多的重视,已经逐渐成为一种重要的发展方向。
2 模拟退火算法介绍
3 模拟退火算法的参数
模拟退火是一种优化算法,它本身是不能独立存在的,需要有一个应用场合,其中温度就是模拟退火需要优化的参数,如果它应用到了聚类分析中,那么就是说聚类分析中有某个或者某几个参数需要优化,而这个参数,或者参数集就是温度所代表的。它可以是某项指标,某项关联度,某个距离等等。
二、源代码
clear;
% 程 序 参 数 设 定
Coord = ... % 城 市 的 坐 标 Coordinates
[ 5.2 16.4 28.4 40.4 74.7 86.7 5.2 16.4 28.4 40.4 55.6 66.7 74.7 86.7 100.5; ...
10.2 10.2 10.2 10.2 10.2 10.2 0 0 0 0 -11 0 0 -2.5 -2.5 ] ;
t0 = 1 ; % 初 温 t0
iLk = 20 ; % 内 循 环 最 大 迭 代 次 数 iLk
oLk = 50 ; % 外 循 环 最 大 迭 代 次 数 oLk
lam = 0.95 ; % λ lambda
istd = 0.001 ; % 若 内 循 环 函 数 值 方 差 小 于 istd 则 停 止
ostd = 0.001 ; % 若 外 循 环 函 数 值 方 差 小 于 ostd 则 停 止
ilen = 5 ; % 内 循 环 保 存 的 目 标 函 数 值 个 数
olen = 5 ; % 外 循 环 保 存 的 目 标 函 数 值 个 数
% 程 序 主 体
p=inf;
for i=1:1:500
m = length( Coord ) ; % 城 市 的 个 数 m
fare = distance( Coord ) ; % 路 径 费 用 fare
path = 1 : m ; % 初 始 路 径 path
pathfar = pathfare( fare , path ) ; % 路 径 费 用 path fare
ores = zeros( 1 , olen ) ; % 外 循 环 保 存 的 目 标 函 数 值
e0 = pathfar ; % 能 量 初 值 e0
t = t0 ; % 温 度 t
for out = 1 : oLk % 外 循 环 模 拟 退 火 过 程
ires = zeros( 1 , ilen ) ; % 内 循 环 保 存 的 目 标 函 数 值
for in = 1 : iLk % 内 循 环 模 拟 热 平 衡 过 程
[ newpath , v ] = swap( path , 1 ) ; % 产 生 新 状 态
e1 = pathfare( fare , newpath ) ; % 新 状 态 能 量
% Metropolis 抽 样 稳 定 准 则
r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ;
if rand < r
path = newpath ; % 更 新 最 佳 状 态
e0 = e1 ;
end
ires = [ ires( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量
% 内 循 环 终 止 准 则 :连 续 ilen 个 状 态 能 量 波 动 小 于 istd
if std( ires , 1 ) < istd
break ;
end
三、运行结果
四、备注
完整代码或者代写添加QQ912100926。
往期回顾>>>>>>
【路径规划】粒子群优化算法之三维无人机路径规划【Matlab 012期】
【路径规划】遗传算法之多物流中心的开放式车辆路径规划【Matlab 013期】
【路径规划】粒子群算法之机器人栅格路径规划【Matlab 014期】
【路径规划】蚁群算法之求解最短路径【Matlab 015期】
【路径规划】免疫算法之物流中心选址【Matlab 016期】
【路径规划】人工蜂群之无人机三维路径规划【Matlab 017期】
【路径规划】遗传算法之基于栅格地图机器人路径规划【Matlab 018期】
【路径规划】蚁群算法之多无人机攻击调度【Matlab 019期】
【路径规划】遗传算法之基于栅格地图的机器人最优路径规划【Matlab 020期】
【路径规划】遗传算法之考虑分配次序的多无人机协同目标分配建模【Matlab 021期】
【路径规划】蚁群算法之多中心vrp问题【Matlab 022期】
【路径规划】蚁群算法之求解带时间窗的多中心VRP【Matlab 023期】
【路径规划】遗传算法之多中心VRP求解【Matlab 024期】
【路径规划】模拟退火之求解VRP问题【Matlab 025期】
【路径规划】A星之栅格路径规划【Matlab 026期】
【路径规划】基于一种带交叉因子的双向寻优粒子群栅格地图路径规划【Matlab 027期】
【路径规划】【TSP】蚁群算法之求解TSP问题含GUI【Matlab 028期】
【路径规划】蚁群算法之栅格地图路径规划【Matlab 029期】
【路径规划】遗传算法之旅行商 TSP 【Matlab 030期】
【路径规划】模拟退火算法之旅行商 TSP 问题【Matlab 031期】
【路径规划】蚁群算法之智能车路径规划【Matlab 032期】
【路径规划】华为杯:基于matlab 无人机优化运用于抢险救灾【Matlab 033期】
【路径规划】matlab之最小费用最大流算问题【Matlab 034期】
【路径规划】A*算法之解决三维路径规划问题【Matlab 035期】
【路径规划】人工蜂群算法之路径规划【Matlab036期】
【路径规划】人工蜂群算法之路径规划【Matlab 037期】
【路径规划】蚁群算法之求解多旅行商MTSP问题【Matlab 038期】
【路径规划】蚁群算法之无人机路径规划【Matlab 039期】
【路径规划】遗传算法之求解多VRP问题【Matlab 040期】
【VRP】遗传算法之带时间窗的车辆路径问题【Matlab 041期】
【路径规划】蚁群算法之三维路径规划【Matlab 042期】
【路径规划】粒子群优化蚁群之求解最短路径【Matlab 043期】
【TSP问题】差分进化之求解TSP问题【Matlab 044期】
【路径规划】RRT之三维路径规划【Matlab 144期】
【路径规划】人工势场算法之无人机编队路径规划【 Matlab 145期】
【VRP问题】节约算法之求解TWVRP问题【Matlab 146期】
【VRP问题】节约算法之求解CVRP问题【Matalb 147期】
【VRP问题】禁忌搜索算法之求解VRP问题【Matalb 148期】
【VRP问题】模拟退火算法之求解CVRP问题【Matlab 149期】
【VRP问题】模拟退火求解带时间窗之TWVRP问题【Matlab 150期】
【VRP问题】人工鱼群算法之求解带时间窗VRP问题【Matlab 151期】
【VRP问题】遗传算法之求解带容量VRP问题【Matlab 152期】
【路径规划】狼群算法算法之三维路径规划【Matlab 153期】
【路径规划】人工势场算法之无人机三维路径规划【Matlab 154期】
【路径规划】改进差分算法之三维多无人机协同航迹规划【Matlab 155期】
【路径规划】人工蜂群算法之多无人机三维路径规划【Matlab 156期】
【路径规划】麻雀搜索算法之无人机三维路径规划【Matlab 157期】
【路径规划】蚁群算法之三维路径规划【Matlab 158期】
【路径规划】免疫算法之最短路径规划【Matlab 159期】
【旅行商问题】免疫算法之求解旅行商问题【Matlab 160期】
【路径规划】遗传算法的公交排班系统分析【Matlab 161期】
【TSP】粒子群算法Hopfield之TSP求解【Matlab 162期】
【路径规划】A和改进A的路径规划【Matlab 163期】
【TSP】改进的禁忌搜索算法之求解旅行商问题【Matlab 170期】
【TSP】改进的蚁群算法之求解旅行商问题【Matlab 171期】