LeetCode 343. 整数拆分--动态规划

   日期:2020-12-19     浏览:98    评论:0    
核心提示:整数拆分给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。示例 1:输入: 2输出: 1解释: 2 = 1 + 1, 1 × 1 = 1。示例 2:输入: 10输出: 36解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。说明: 你可以假设 n 不小于 2 且不大于 58。题解:定义数组dp[maxn],dp[n]表示数字n可以得到的题意描述的答案,那么设x取值范围在[1,n-1]之间,于是我们的答案dp[.
  1. 整数拆分

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

说明: 你可以假设 n 不小于 2 且不大于 58。

题解:

定义数组dp[maxn],dp[n]表示数字n可以得到的题意描述的答案,那么设x取值范围在[1,n-1]之间,于是我们的答案dp[n]=max(x*(n-x),xdp[n-x]);这个不难理解,x在区间[1,n-1]取值,另外的数字n-x有两种状态,一个是不展开,那么答案就是x(n-x),另外一个是展开看看有没有更大的值,于是有x*dp[n-x],于是状态转移方程如上所示。

AC代码

class Solution { 
public:
    int dp[60];
    int integerBreak(int n) { 
        for(int i=2;i<=n;i++)
        { 
            for(int j=1;j<i;j++)
            { 
                dp[i]=max(dp[i],dp[i-j]*j);
                dp[i]=max(dp[i],(i-j)*j);
            }
        }
        return dp[n];
    }
};

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服