CNN人脸识别之模型创建

   日期:2020-11-16     浏览:100    评论:0    
核心提示:1、创建模型引入包import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Dense,Dropout,Conv2D,MaxPooling2D,Flattenfrom keras.optimizers import SGD,Adamfrom keras.regula

1、创建模型

  • 引入包
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Conv2D,MaxPooling2D,Flatten
from keras.optimizers import SGD,Adam
from keras.regularizers import l2
import _pickle as p
from keras import optimizers
import itertools
import cv2
import os
import random
from keras.regularizers import l2
print(1)
from sklearn.model_selection import train_test_split
  • 获取图片
    图片是每个人脸有500张,为了增加鲁棒性,然后通过引入os,实现文件读取,分别将图片和标签加入到image、label中,但是其是一一对应的关系,然后将其归一化,然后再将其顺序打乱, 但是打乱的时候也是一一对应的关系,如果出现错误,那么将会全部错误,然后为了测试其功能,可以将其划分为测试数据和训练数据。
# 读取训练数据到内存,这里数据结构是列表

# path_name是当前工作目录,后面会由os.getcwd()获得
def read_path(path_name):
    images = []
    labels = []

    for dir_item in os.listdir(path_name): # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
        # 从当前工作目录寻找训练集图片的文件夹
        full_path = os.listdir(path_name+dir_item)
        print(dir_item)
        for file in full_path:
            path = path_name+dir_item+'/'+file
            img = cv2.imread(path)
            images.append(img)
            labels.append(path_name+dir_item)

    return images,labels

images,labels = read_path('./pic/')
# 将lsit转换为numpy array
images = np.asarray(images, dtype='float64')/256 
labels = np.asarray([0 if label.endswith('1') else 1 if label.endswith('2') else 2 for label in labels])
print(labels)
index = [i for i in range(len(images))] 
random.shuffle(index)
data = images[index]
label = labels[index]
label= np_utils.to_categorical(label, num_classes=3)
#标签打乱

X_train, X_test, Y_train, Y_test = train_test_split(data, label, test_size=0.30, random_state=42)
2.3、创建模型

这是用的最经典的五层模型,其中的参数我贴在下面

# 构建一个空的网络模型,它是一个线性堆叠模型,各神经网络层会被顺序添加,专业名称为序贯模型或线性堆叠模型
# model = Sequential()
# # 以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层
# model.add(Conv2D(
#     input_shape= (47,57,3),
#     filters = 32,
#     kernel_size = 5,
#     strides = 1,
#     padding = 'same',
#     activation = 'relu'
# ))
model=Sequential()
model.add(Conv2D(filters=36, kernel_size=5, padding='valid',kernel_regularizer=l2(0.003), input_shape=(100,100,3), activation='relu'))
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2,2)))
 
model.add(Conv2D(filters=16, kernel_size=(5,5), padding='valid', activation='relu'))
 
model.add(MaxPooling2D(pool_size=(2,2)))
 

model.add(Flatten())
 
#下面就是全连接层了
model.add(Dense(520, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(128, activation='relu'))
 
model.add(Dense(3, activation='softmax'))
#compile model
 
#事实证明,对于分类问题,使用交叉熵(cross entropy)作为损失函数更好些
model.compile(
    loss='categorical_crossentropy',
    optimizer=optimizers.Adadelta(lr=0.01, rho=0.95, epsilon=1e-06),
    metrics=['accuracy']
)
# 输出模型概况
model.summary()

2.4、配置模型

模型中用到的是交叉熵损失函数,前面的全连接层激活函数用的‘reul’,最后一层用的‘softmax’函数。

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)  # 采用SGD+momentum的优化器进行训练,首先生成一个优化器对象
model.compile(loss='categorical_crossentropy',
                    optimizer=optimizers.Adadelta(lr=0.01, rho=0.95, epsilon=1e-06),
                    metrics=['accuracy'])  # 完成实际的模型配置工作
2.5、训练模型

然后模型就生成了‘my_model.h5’

model.fit(X_train, Y_train, epochs = 10,batch_size=128)
loss_, accuracy_ = model.evaluate(X_test,Y_test)
loss, accuracy = model.evaluate(X_train,Y_train)
result = model.predict(X_test)
print(loss_)
print(accuracy_)
print(loss)
print(accuracy)
model.save('my_model.h5')
#model.load_weights('my_model.h5')

但是光有模型想要自己实现人脸识别还有一段路,需要自己在后面写一些东西来识别,辨别图像,然后才能真正实现人脸识别功能,暂时先写模型创建,后续更新模型使用,实现人脸识别。

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服