【论文笔记】Strip Pooling: Rethinking Spatial Pooling for Scene Parsing

   日期:2020-11-10     浏览:104    评论:0    
核心提示:【论文笔记】Strip Pooling: Rethinking Spatial Pooling for Scene Parsing模块代码class StripPooling(nn.Module): """ Reference: """ def __init__(self, in_channels, pool_size, norm_layer, up_kwargs): super(StripPooling, self).__init__()

【论文笔记】Strip Pooling: Rethinking Spatial Pooling for Scene Parsing



模块代码

class StripPooling(nn.Module):
    """ Reference: """
    def __init__(self, in_channels, pool_size, norm_layer, up_kwargs):
        super(StripPooling, self).__init__()
        self.pool1 = nn.AdaptiveAvgPool2d(pool_size[0])
        self.pool2 = nn.AdaptiveAvgPool2d(pool_size[1])
        self.pool3 = nn.AdaptiveAvgPool2d((1, None))
        self.pool4 = nn.AdaptiveAvgPool2d((None, 1))

        inter_channels = int(in_channels/4)
        self.conv1_1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False),
                                norm_layer(inter_channels),
                                nn.ReLU(True))
        self.conv1_2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False),
                                norm_layer(inter_channels),
                                nn.ReLU(True))
        self.conv2_0 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                norm_layer(inter_channels))
        self.conv2_1 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                norm_layer(inter_channels))
        self.conv2_2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                norm_layer(inter_channels))
        self.conv2_3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False),
                                norm_layer(inter_channels))
        self.conv2_4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False),
                                norm_layer(inter_channels))
        self.conv2_5 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                norm_layer(inter_channels),
                                nn.ReLU(True))
        self.conv2_6 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                norm_layer(inter_channels),
                                nn.ReLU(True))
        self.conv3 = nn.Sequential(nn.Conv2d(inter_channels*2, in_channels, 1, bias=False),
                                norm_layer(in_channels))
        # bilinear interpolate options
        self._up_kwargs = up_kwargs

    def forward(self, x):
        _, _, h, w = x.size()
        x1 = self.conv1_1(x)
        x2 = self.conv1_2(x)
        x2_1 = self.conv2_0(x1)
        x2_2 = F.interpolate(self.conv2_1(self.pool1(x1)), (h, w), **self._up_kwargs)
        x2_3 = F.interpolate(self.conv2_2(self.pool2(x1)), (h, w), **self._up_kwargs)
        x2_4 = F.interpolate(self.conv2_3(self.pool3(x2)), (h, w), **self._up_kwargs)
        x2_5 = F.interpolate(self.conv2_4(self.pool4(x2)), (h, w), **self._up_kwargs)
        x1 = self.conv2_5(F.relu_(x2_1 + x2_2 + x2_3))
        x2 = self.conv2_6(F.relu_(x2_5 + x2_4))
        out = self.conv3(torch.cat([x1, x2], dim=1))
        return F.relu_(x + out)
 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服