我觉得还是把ACfly的传感器的逻辑弄清楚,这样再去二次开发好一些。(折腾半天发现有很关键一部分没有开源,怪不得找不到,这让我很失望)

   日期:2020-10-04     浏览:109    评论:0    
核心提示:我觉得还是把ACfly的传感器的逻辑弄清楚,这样再去二次开发好一些。确实是这样的,还是得真正搞清楚,不然弄不成。真正把他这个工程啃透。我先不说语法上,先逻辑上啃透。他觉得二次开发简单那是因为他对整个工程有了透彻的了解了。一个刚来的人听他讲那二次开发还是会乱的。acfly的基本逻辑是,你先把传感器注册上,然后它会有函数自动判断你传感器的数据质量如何,并选择用什么传感器。还有问题默认注册的位置传感器的数据单位是多少。传感器的处理逻辑...

 

 

我觉得还是把ACfly的传感器的逻辑弄清楚,这样再去二次开发好一些。确实是这样的,还是得真正搞清楚,不然弄不成。真正把他这个工程啃透。我先不说语法上,先逻辑上啃透。

他觉得二次开发简单那是因为他对整个工程有了透彻的了解了。

一个刚来的人听他讲那二次开发还是会乱的。

 

 

acfly的基本逻辑是,你先把传感器注册上,然后它会有函数自动判断你传感器的数据质量如何,并选择用什么传感器。

 

 

 

 

还有问题默认注册的位置传感器的数据单位是多少。

 

 

传感器的处理逻辑都在sensor.c里面,包括像经纬度投影到平面。那几种传感器的数据怎么处理的看这个文件就够了。

 

从contrlsystem.hpp这个文件就可以看书ctrl_attitude.cpp和ctrL_position.cpp这两个文件里面有哪些函数。这也是那个华清老师说的,高手都是先看头文件。不然你直接看那两个C++文件几千行,很乱的。ctrL_position.cpp是没有单独的头文件的。

ACfly的用户手册里面也说了单位是cm

 

 

找到那个进行传感器数据质量判断,还有根据传感器优先级进行传感器选择的函数。

我们这么来想,所谓传感器的选择实际是位置传感器的选择,姿态传感器就是用IMU,不用选择什么

位置传感器无非就是在气压计,光流,超声波,GPS,摄像头这之间选择。

所以只需要对位置传感器进行判断就可以了

所以你在sensor.h里可以看到,有这么多个位置传感器的偏移量。

在sensor.cpp也可以看到



	struct SensorPosOffset
	{
		//飞控位置偏移
		float Fc_x[2];
		float Fc_y[2];
		float Fc_z[2];
		
		//传感器0位置偏移
		float S0_x[2];
		float S0_y[2];
		float S0_z[2];
		
		//传感器1位置偏移
		float S1_x[2];
		float S1_y[2];
		float S1_z[2];
		
		//传感器2位置偏移
		float S2_x[2];
		float S2_y[2];
		float S2_z[2];
		
		//传感器3位置偏移
		float S3_x[2];
		float S3_y[2];
		float S3_z[2];
		
		//传感器4位置偏移
		float S4_x[2];
		float S4_y[2];
		float S4_z[2];
		
		//传感器5位置偏移
		float S5_x[2];
		float S5_y[2];
		float S5_z[2];
		
		//传感器6位置偏移
		float S6_x[2];
		float S6_y[2];
		float S6_z[2];
		
		//传感器7位置偏移
		float S7_x[2];
		float S7_y[2];
		float S7_z[2];
		
		//传感器8位置偏移
		float S8_x[2];
		float S8_y[2];
		float S8_z[2];
		
		//传感器9位置偏移
		float S9_x[2];
		float S9_y[2];
		float S9_z[2];
		
		//传感器10位置偏移
		float S10_x[2];
		float S10_y[2];
		float S10_z[2];
		
		//传感器11位置偏移
		float S11_x[2];
		float S11_y[2];
		float S11_z[2];
		
		//传感器12位置偏移
		float S12_x[2];
		float S12_y[2];
		float S12_z[2];
		
		//传感器13位置偏移
		float S13_x[2];
		float S13_y[2];
		float S13_z[2];
		
		//传感器14位置偏移
		float S14_x[2];
		float S14_y[2];
		float S14_z[2];
		
		//传感器15位置偏移
		float S15_x[2];
		float S15_y[2];
		float S15_z[2];
	};

 

 

这有个传感器位置读取函数。

 

所以其实最关键的就是这个位置传感器的判断和选择了。我们自己注册传感器也是注册位置传感器,它已经给我们定义好了三种位置传感器。

 

 

我发现对传感器数据是否健康的判断在传感器更新函数里面,不是的,这里应该只是简单判断有没有数据这样子。

比如下面这是其中一个位置传感器更新函数 ,这里面有看传感器是否可用。

bool PositionSensorUpdatePosition( uint8_t index, vector3<double> position, bool available, double delay, double xy_trustD, double z_trustD, double TIMEOUT )
		{
			if( index >= Position_Sensors_Count )
				return false;
			
			bool inFlight;
			get_is_inFlight(&inFlight);
			uint64_t log = 0;
			ReadParam( "SDLog_PosSensor", 0, 0, (uint64_t*)&log, 0 );
			
			TickType_t TIMEOUT_Ticks;
			if( TIMEOUT >= 0 )
				TIMEOUT_Ticks = TIMEOUT*configTICK_RATE_HZ;
			else
				TIMEOUT_Ticks = portMAX_DELAY;
			if( xSemaphoreTake(Position_Sensors_Mutex[index],TIMEOUT_Ticks) )
			{	//锁定传感器
				if( Position_Sensors[index] == 0 )
				{
					xSemaphoreGive(Position_Sensors_Mutex[index]);
					return false;
				}
				
				Position_Sensor* sensor = Position_Sensors[index];
				//判断传感器类型、数据是否正确
				bool data_effective;
				switch( sensor->sensor_DataType )
				{
					case Position_Sensor_DataType_s_xy:
						if( __ARM_isnan( position.x ) || __ARM_isnan( position.y ) || \
								__ARM_isinf( position.x ) || __ARM_isinf( position.y ) )
							data_effective = false;
						else
							data_effective = true;
						break;
						
					case Position_Sensor_DataType_s_z:
						if( __ARM_isnan( position.z ) || __ARM_isinf( position.z ) )
							data_effective = false;
						else
							data_effective = true;
						break;
						
					case Position_Sensor_DataType_s_xyz:
						if( __ARM_isnan( position.x ) || __ARM_isnan( position.y ) || __ARM_isnan( position.z ) || \
								__ARM_isinf( position.x ) || __ARM_isinf( position.y ) || __ARM_isinf( position.z ) )
							data_effective = false;
						else
							data_effective = true;
						break;
						
					default:
						data_effective = false;
						break;
				}
				if( !data_effective )
				{	//数据出错退出
					xSemaphoreGive(Position_Sensors_Mutex[index]);
					return false;
				}
				
				//更新可用状态
				if( sensor->available != available )
					sensor->available_status_update_time = TIME::now();
				sensor->available = available;
				
				//更新数据
				sensor->position = position;
				
				//更新采样时间
				sensor->sample_time = sensor->last_update_time.get_pass_time_st();			
				
				//延时大于0更新延时
				if( delay > 0 )
					sensor->delay = delay;
				//更新信任度
				if( xy_trustD >= 0 )
					sensor->xy_trustD = xy_trustD;
				if( z_trustD >= 0 )
					sensor->z_trustD = z_trustD;
				
				//记录位置数据
				if(inFlight && log)
					SDLog_Msg_PosSensor( index, *sensor );
				
				xSemaphoreGive(Position_Sensors_Mutex[index]);
				return true;
			}	//解锁传感器
			return false;
		}

 

 

这才是位置控制的代码,当然是在ctrl_position.cpp里面,只是你之前没有细看找到,我觉得位置传感器的选择应该也是在这里面。因为之前这个文件里面大部分函数都是设定一些目标值,但是你用PID或者ADRC肯定是要用当前值减去目标值得到误差输入误差的啊,对不对,这个应该是在位置控制里面完成,那么肯定就有当前值,那我们就可以去找他怎么确定当前值的。

比如下面这个就是目标值减去当前值,可以可以根据这个进一步去找。

右键查看position的定义会跳到这里,会发现这里定义了三个向量,位置,速度,加速度。

vector3其实就是这样一种数据,包含x y z

但是我没有找到position是在哪里得到具体值的。

void ctrl_Position()
{	
	bool Attitude_Control_Enabled;	is_Attitude_Control_Enabled(&Attitude_Control_Enabled);
	if( Attitude_Control_Enabled == false )
	{
		Altitude_Control_Enabled = false;
		Position_Control_Enabled = false;
		return;
	}
	
	double e_1_n;
	double e_1;
	double e_2_n;
	double e_2;
	
	bool inFlight;	get_is_inFlight(&inFlight);
	vector3<double> Position;	get_Position_Ctrl(&Position);
	vector3<double> VelocityENU;	get_VelocityENU_Ctrl(&VelocityENU);
	vector3<double> AccelerationENU;	get_AccelerationENU_Ctrl(&AccelerationENU);
	get_throttle_force(&AccelerationENU.z);	AccelerationENU.z-=GravityAcc;
	
	//位置速度滤波
	double Ps = cfg.P1[0];
	double Pv = cfg.P2[0];
	double Pa = cfg.P3[0];
	
	static vector3<double> TAcc;
	vector3<double> TargetVelocity;
	vector3<double> TargetVelocity_1;
	vector3<double> TargetVelocity_2;
	
	//XY或Z其中一个为非3D模式则退出3D模式
	if( Is_3DAutoMode(HorizontalPosition_ControlMode) && Is_3DAutoMode(Altitude_ControlMode)==false )
		HorizontalPosition_ControlMode = Position_ControlMode_Locking;
	else if( Is_3DAutoMode(HorizontalPosition_ControlMode)==false && Is_3DAutoMode(Altitude_ControlMode) )
		Altitude_ControlMode = Position_ControlMode_Locking;
	
	if( Position_Control_Enabled )
	{	//水平位置控制
		if( get_Position_MSStatus() != MS_Ready )
		{
			Position_Control_Enabled = false;
			goto PosCtrl_Finish;
		}
		
		switch( HorizontalPosition_ControlMode )
		{
			case Position_ControlMode_Position:
			{
				if( inFlight )
				{
					vector2<double> e1;
					e1.x = target_position.x - Position.x;
					e1.y = target_position.y - Position.y;
					vector2<double> e1_1;
					e1_1.x = - VelocityENU.x;
					e1_1.y = - VelocityENU.y;
					vector2<double> e1_2;
					e1_2.x = - TAcc.x;
					e1_2.y = - TAcc.y;
					double e1_length = safe_sqrt(e1.get_square());
					e_1_n = e1.x*e1_1.x + e1.y*e1_1.y;
					if( !is_zero(e1_length) )
						e_1 = e_1_n / e1_length;
					else
						e_1 = 0;
					e_2_n = ( e1.x*e1_2.x + e1.y*e1_2.y + e1_1.x*e1_1.x + e1_1.y*e1_1.y )*e1_length - e_1*e_1_n;
					if( !is_zero(e1_length*e1_length) )
						e_2 = e_2_n / (e1_length*e1_length);
					else
						e_2 = 0;
					smooth_kp_d2 d1 = smooth_kp_2( e1_length, e_1, e_2 , Ps, 200 );
					vector2<double> T2;
					vector2<double> T2_1;
					vector2<double> T2_2;
					if( !is_zero(e1_length*e1_length*e1_length) )
					{
						vector2<double> n = e1 * (1.0/e1_length);
						vector2<double> n_1 = (e1_1*e1_length - e1*e_1) / (e1_length*e1_length);
						vector2<double> n_2 = ( (e1_2*e1_length-e1*e_2)*e1_length - (e1_1*e1_length-e1*e_1)*(2*e_1) ) / (e1_length*e1_length*e1_length);
						T2 = n*d1.d0;
						T2_1 = n*d1.d1 + n_1*d1.d0;
						T2_2 = n*d1.d2 + n_1*(2*d1.d1) + n_2*d1.d0;
					}
					TargetVelocity.x = T2.x;	TargetVelocity.y = T2.y;
					TargetVelocity_1.x = T2_1.x;	TargetVelocity_1.y = T2_1.y;
					TargetVelocity_2.x = T2_2.x;	TargetVelocity_2.y = T2_2.y;
				}
				else
				{
					//没起飞前在位置控制模式
					//重置期望位置
					target_position.x = Position.x;
					target_position.y = Position.y;
					Attitude_Control_set_Target_RollPitch( 0, 0 );
					goto PosCtrl_Finish;
				}
				break;
			}		
			case Position_ControlMode_Velocity:
			{
				if( !inFlight )
				{
					//没起飞时重置期望速度
					Attitude_Control_set_Target_RollPitch( 0, 0 );
					goto PosCtrl_Finish;
				}
				else
				{
					TargetVelocity.x = target_velocity.x;
					TargetVelocity.y = target_velocity.y;
					Pv = cfg.P2_VelXY[0];
				}
				break;
			}
			
			case Position_ControlMode_RouteLine:
			{
				if( inFlight )
				{
					//计算垂足
					vector2<double> A( target_position.x, target_position.y );
					vector2<double> C( Position.x, Position.y );
					vector2<double> A_C = C - A;
					vector2<double> A_B( route_line_A_B.x, route_line_A_B.y );
					double k = (A_C * A_B) * route_line_m;
					vector2<double> foot_point = (A_B * k) + A;
					
					//计算偏差
					vector2<double> e1r = A - foot_point;
					vector2<double> e1d = foot_point - C;
					double e1r_length = safe_sqrt(e1r.get_square());
					double e1d_length = safe_sqrt(e1d.get_square());
					
					//计算route方向单位向量
					vector2<double> route_n;
					if( e1r_length > 0.001 )
						route_n = e1r * (1.0/e1r_length);
					
					//计算d方向单位向量
					vector2<double> d_n;
					if( e1d_length > 0.001 )
						d_n = e1d * (1.0/e1d_length);
					
					//计算e1导数
					vector2<double> e1_1( VelocityENU.x, VelocityENU.y );
					double e1r_1 = -(e1_1 * route_n);
					double e1d_1 = -(e1_1 * d_n);
					//e1二阶导
					vector2<double> e1_2( TAcc.x, TAcc.y );
					double e1r_2 = -(e1_2 * route_n);
					double e1d_2 = -(e1_2 * d_n);
					
					
						smooth_kp_d2 d1r = smooth_kp_2( e1r_length, e1r_1, e1r_2 , Ps, AutoVelXY );
						vector2<double> T2r = route_n * d1r.d0;
						vector2<double> T2r_1 = route_n * d1r.d1;
						vector2<double> T2r_2 = route_n * d1r.d2;
					
					
					
						smooth_kp_d2 d1d = smooth_kp_2( e1d_length, e1d_1, e1d_2 , Ps, AutoVelXY );
						vector2<double> T2d = d_n * d1d.d0;
						vector2<double> T2d_1 = d_n * d1d.d1;
						vector2<double> T2d_2 = d_n * d1d.d2;
					
						
					TargetVelocity.x = T2r.x+T2d.x;	TargetVelocity.y = T2r.y+T2d.y;
					TargetVelocity_1.x = T2r_1.x+T2d_1.x;	TargetVelocity_1.y = T2r_1.y+T2d_1.y;
					TargetVelocity_2.x = T2r_2.x+T2d_2.x;	TargetVelocity_2.y = T2r_2.y+T2d_2.y;
						
					if( e1r.get_square() + e1d.get_square() < 20*20 )
						HorizontalPosition_ControlMode = Position_ControlMode_Position;
				}
				else
				{
					//没起飞时重置期望速度
					Attitude_Control_set_Target_RollPitch( 0, 0 );
					return;
				}
				break;
			}
			
			case Position_ControlMode_RouteLine3D:
			{
				if( inFlight )
				{
					//计算垂足
					vector3<double> A_C = Position - target_position;
					double k = (A_C * route_line_A_B) * route_line_m;
					vector3<double> foot_point = (route_line_A_B * k) + target_position;
					
					//计算偏差
					vector3<double> e1r = target_position - foot_point;
					vector3<double> e1d = foot_point - Position;
					double e1r_length = safe_sqrt(e1r.get_square());
					double e1d_length = safe_sqrt(e1d.get_square());
					
					//计算route方向单位向量
					vector3<double> route_n;
					if( e1r_length > 0.001 )
						route_n = e1r * (1.0/e1r_length);
					
					//计算e1导数
					double e1r_1_length = -(VelocityENU * route_n);	
					vector3<double> e1r_1 = route_n * e1r_1_length;					
					vector3<double> e1d_1 = -(VelocityENU + e1r_1);
					//e1二阶导
					vector3<double> e1_2( TAcc.x, TAcc.y, AccelerationENU.z );
					double e1r_2_length = -(e1_2 * route_n);
					vector3<double> e1r_2 = route_n * e1r_2_length;					
					vector3<double> e1d_2 = -(e1_2 + e1r_2);
					
					
						smooth_kp_d2 d1r = smooth_kp_2( e1r_length, e1r_1_length, e1r_2_length , Ps, AutoVelXYZ );
						vector3<double> T2r = route_n * d1r.d0;
						vector3<double> T2r_1 = route_n * d1r.d1;
						vector3<double> T2r_2 = route_n * d1r.d2;
					
					
					
						e_1_n = e1d.x*e1d_1.x + e1d.y*e1d_1.y + e1d.z*e1d_1.z;
						if( !is_zero(e1d_length) )
							e_1 = e_1_n / e1d_length;
						else
							e_1 = 0;
						e_2_n = ( e1d.x*e1d_2.x + e1d.y*e1d_2.y + e1d.z*e1d_2.z + e1d_1.x*e1d_1.x + e1d_1.y*e1d_1.y + e1d_1.z*e1d_1.z )*e1d_length - e_1*e_1_n;
						if( !is_zero(e1d_length*e1d_length) )
							e_2 = e_2_n / (e1d_length*e1d_length);
						else
							e_2 = 0;
						smooth_kp_d2 d1d = smooth_kp_2( e1d_length, e_1, e_2 , Ps, AutoVelXYZ );
						vector3<double> T2d;
						vector3<double> T2d_1;
						vector3<double> T2d_2;
						if( !is_zero(e1d_length*e1d_length*e1d_length) )
						{
							vector3<double> n = e1d * (1.0/e1d_length);
							vector3<double> n_1 = (e1d_1*e1d_length - e1d*e_1) / (e1d_length*e1d_length);
							vector3<double> n_2 = ( (e1d_2*e1d_length-e1d*e_2)*e1d_length - (e1d_1*e1d_length-e1d*e_1)*(2*e_1) ) / (e1d_length*e1d_length*e1d_length);
							T2d = n*d1d.d0;
							T2d_1 = n*d1d.d1 + n_1*d1d.d0;
							T2d_2 = n*d1d.d2 + n_1*(2*d1d.d1) + n_2*d1d.d0;
						}
					
						
					TargetVelocity = T2r + T2d;
					TargetVelocity_1 = T2r_1 + T2d_1;
					TargetVelocity_2 = T2r_2 + T2d_2;
						
					if( e1r.get_square() + e1d.get_square() < 20*20 )
						HorizontalPosition_ControlMode = Altitude_ControlMode = Position_ControlMode_Position;
				}
				else
				{
					//没起飞时重置期望速度
					Attitude_Control_set_Target_RollPitch( 0, 0 );
					return;
				}
				break;
			}
			
			case Position_ControlMode_Locking:
			default:
			{	//刹车锁位置
				static uint16_t lock_counter = 0;
				if( inFlight )
				{					
					TargetVelocity.x = 0;
					TargetVelocity.y = 0;
					if( VelocityENU.x*VelocityENU.x + VelocityENU.y*VelocityENU.y < 10*10 )
					{
						if( ++lock_counter >= CtrlRateHz*0.7 )
						{
							lock_counter = 0;
							target_position.x = Position.x;
							target_position.y = Position.y;
							HorizontalPosition_ControlMode = Position_ControlMode_Position;
						}
					}
					else
						lock_counter = 0;
				}
				else
				{
					lock_counter = 0;
					target_position.x = Position.x;
					target_position.y = Position.y;
					HorizontalPosition_ControlMode = Position_ControlMode_Position;
					Attitude_Control_set_Target_RollPitch( 0, 0 );
					return;
				}
				break;
			}
		}	
		
		//计算期望加速度
		vector2<double> e2;
		e2.x = TargetVelocity.x - VelocityENU.x;
		e2.y = TargetVelocity.y - VelocityENU.y;
		vector2<double> e2_1;
		e2_1.x = TargetVelocity_1.x - TAcc.x;
		e2_1.y = TargetVelocity_1.y - TAcc.y;
		double e2_length = safe_sqrt(e2.get_square());
		e_1_n = e2.x*e2_1.x + e2.y*e2_1.y;
		if( !is_zero(e2_length) )
			e_1 = e_1_n / e2_length;
		else
			e_1 = 0;
		smooth_kp_d1 d2;
		if( Is_AutoMode(HorizontalPosition_ControlMode) )
			d2 = smooth_kp_1( e2_length, e_1 , Pv, cfg.maxAutoAccXY[0] );
		else
			d2 = smooth_kp_1( e2_length, e_1 , Pv, cfg.maxAccXY[0] );
		vector2<double> T3;
		vector2<double> T3_1;
		if( !is_zero(e2_length*e2_length) )
		{
			vector2<double> n = e2 * (1.0/e2_length);
			vector2<double> n_1 = (e2_1*e2_length - e2*e_1) / (e2_length*e2_length);
			T3 = n*d2.d0;
			T3_1 = n*d2.d1 + n_1*d2.d0;
		}
		T3 += vector2<double>( TargetVelocity_1.x, TargetVelocity_1.y );
		T3_1 += vector2<double>( TargetVelocity_2.x, TargetVelocity_2.y );
		
		vector2<double> e3;
		e3.x = T3.x - TAcc.x;
		e3.y = T3.y - TAcc.y;
		double e3_length = safe_sqrt(e3.get_square());
		double d3;
		if( Is_AutoMode(HorizontalPosition_ControlMode) )
			d3 = smooth_kp_0( e3_length , Pa, cfg.maxAutoJerkXY[0] );
		else
			d3 = smooth_kp_0( e3_length , Pa, cfg.maxJerkXY[0] );
		vector2<double> T4;
		if( !is_zero(e3_length) )
		{
			vector2<double> n = e3 * (1.0/e3_length);
			T4 = n*d3;
		}
		if( Is_AutoMode(HorizontalPosition_ControlMode) )
			T4.constrain( cfg.maxAutoJerkXY[0] );
		else
			T4.constrain( cfg.maxJerkXY[0] );
		T4 += T3_1;
		
		TAcc.x += T4.x*(1.0/CtrlRateHz);
		TAcc.y += T4.y*(1.0/CtrlRateHz);	
		
		//去除风力扰动
		vector3<double> WindDisturbance;
		get_WindDisturbance( &WindDisturbance );
		vector2<double> target_acceleration;
//		target_acceleration.x = TAcc.x - WindDisturbance.x;
//		target_acceleration.y = TAcc.y - WindDisturbance.y;
		target_acceleration.x = T3.x - WindDisturbance.x;
		target_acceleration.y = T3.y - WindDisturbance.y;
		
		//旋转至Bodyheading
		Quaternion attitude;
		get_Attitude_quat(&attitude);
		double yaw = attitude.getYaw();		
		double sin_Yaw, cos_Yaw;
		fast_sin_cos( yaw, &sin_Yaw, &cos_Yaw );
		double target_acceleration_x_bodyheading = ENU2BodyHeading_x( target_acceleration.x , target_acceleration.y , sin_Yaw , cos_Yaw );
		double target_acceleration_y_bodyheading = ENU2BodyHeading_y( target_acceleration.x , target_acceleration.y , sin_Yaw , cos_Yaw );
//		target_acceleration_x_bodyheading = ThrOut_Filters[0].run(target_acceleration_x_bodyheading);
//		target_acceleration_y_bodyheading = ThrOut_Filters[1].run(target_acceleration_y_bodyheading);
		
		//计算风力补偿角度
		double WindDisturbance_Bodyheading_x = ENU2BodyHeading_x( WindDisturbance.x , WindDisturbance.y , sin_Yaw , cos_Yaw );
		double WindDisturbance_Bodyheading_y = ENU2BodyHeading_y( WindDisturbance.x , WindDisturbance.y , sin_Yaw , cos_Yaw );
		//计算角度
		double AccUp = GravityAcc + AccelerationENU.z;
		double AntiDisturbancePitch = atan2( -WindDisturbance_Bodyheading_x , AccUp );
		double AntiDisturbanceRoll = atan2( WindDisturbance_Bodyheading_y , AccUp );
		
		//计算目标角度
		double target_Roll = atan2( -target_acceleration_y_bodyheading , AccUp );
		double target_Pitch = atan2( target_acceleration_x_bodyheading , AccUp );
		if( HorizontalPosition_ControlMode==Position_ControlMode_Velocity )
		{	//角度限幅
			if( VelCtrlMaxRoll>0 && VelCtrlMaxPitch>0 )
			{
				target_Roll = constrain( target_Roll , AntiDisturbanceRoll - VelCtrlMaxRoll, AntiDisturbanceRoll + VelCtrlMaxRoll );
				target_Pitch = constrain( target_Pitch , AntiDisturbancePitch - VelCtrlMaxPitch, AntiDisturbancePitch + VelCtrlMaxPitch );
			}
			else if( VelCtrlMaxRoll>0 )
			{
				vector2<double> Tangle( target_Roll - AntiDisturbanceRoll, target_Pitch - AntiDisturbancePitch );
				Tangle.constrain(VelCtrlMaxRoll);
				target_Roll = AntiDisturbanceRoll + Tangle.x;
				target_Pitch = AntiDisturbancePitch + Tangle.y;
			}
		}

		//设定目标角度
		Attitude_Control_set_Target_RollPitch( target_Roll, target_Pitch );
		
		//获取真实目标角度修正TAcc
		Attitude_Control_get_Target_RollPitch( &target_Roll, &target_Pitch );
		target_acceleration_x_bodyheading = tan(target_Pitch)*GravityAcc;
		target_acceleration_y_bodyheading = -tan(target_Roll)*GravityAcc;
		target_acceleration.x = BodyHeading2ENU_x( target_acceleration_x_bodyheading, target_acceleration_y_bodyheading , sin_Yaw, cos_Yaw );
		target_acceleration.y = BodyHeading2ENU_y( target_acceleration_x_bodyheading, target_acceleration_y_bodyheading , sin_Yaw, cos_Yaw );
		TAcc.x = target_acceleration.x + WindDisturbance.x;
		TAcc.y = target_acceleration.y + WindDisturbance.y;
	}//水平位置控制
	else
	{
		ThrOut_Filters[0].reset(0);
		ThrOut_Filters[1].reset(0);
	}
	
PosCtrl_Finish:	
	if( Altitude_Control_Enabled )
	{//高度控制
			
		//设置控制量限幅
		Target_tracker[2].r2p = cfg.maxVelUp[0];
		Target_tracker[2].r2n = cfg.maxVelDown[0];
		Target_tracker[2].r3p = cfg.maxAccUp[0];
		Target_tracker[2].r3n = cfg.maxAccDown[0];
		Target_tracker[2].r4p = cfg.maxJerkUp[0];
		Target_tracker[2].r4n = cfg.maxJerkDown[0];
		
		if( !Is_3DAutoMode(Altitude_ControlMode) )
		{
			switch( Altitude_ControlMode )
			{
				case Position_ControlMode_Position:
				{	//控制位置
					if( inFlight )
					{
						Target_tracker[2].r2p = 0.3*cfg.maxVelUp[0];
						Target_tracker[2].r2n = 0.3*cfg.maxVelDown[0];
						Target_tracker[2].track4( target_position.z , 1.0 / CtrlRateHz );
					}
					else
					{
						//没起飞前在位置控制模式
						//不要起飞
						Target_tracker[2].reset();
						target_position.z = Target_tracker[2].x1 = Position.z;
						Attitude_Control_set_Throttle( get_STThrottle() );
						goto AltCtrl_Finish;
					}
					break;
				}
				case Position_ControlMode_Velocity:
				{	//控制速度
					if( inFlight || target_velocity.z > 0 )
					{
						double TVel;
						if( target_velocity.z > cfg.maxVelUp[0] )
							TVel = cfg.maxVelUp[0];
						else if( target_velocity.z < -cfg.maxVelDown[0] )
							TVel = -cfg.maxVelDown[0];
						else
							TVel = target_velocity.z;
						Target_tracker[2].track3( TVel , 1.0 / CtrlRateHz );
					}
					else
					{
						//没起飞且期望速度为负
						//不要起飞
						Target_tracker[2].reset();
						Target_tracker[2].x1 = Position.z;
						Attitude_Control_set_Throttle( get_STThrottle() );
						goto AltCtrl_Finish;
					}
					break;
				}
				
				case Position_ControlMode_Takeoff:
				{	//起飞
					
					//设置控制量最大值
					Target_tracker[2].r3p = cfg.maxAutoAccUp[0];
					Target_tracker[2].r3n = cfg.maxAutoAccDown[0];
					Target_tracker[2].r4p = cfg.maxAutoJerkUp[0];
					Target_tracker[2].r4n = cfg.maxAutoJerkDown[0];
					
					if( inFlight )
					{
						//已起飞
						//控制达到目标高度
						double homeZ;
						getHomeLocalZ(&homeZ);
						if( Position.z - homeZ < 100 )
							Target_tracker[2].r2n = Target_tracker[2].r2p = 50;
						else
							Target_tracker[2].r2n = Target_tracker[2].r2p = ( AutoVelZ < cfg.maxAutoVelUp[0] ) ? AutoVelZ : cfg.maxAutoVelUp[0];
						Target_tracker[2].track4( target_position.z , 1.0 / CtrlRateHz );
						if( fabs( target_position.z - Position.z ) < 10 && \
								in_symmetry_range( Target_tracker[2].x2 , 0.1 ) && \
								in_symmetry_range( Target_tracker[2].x3 , 0.1 )	)
							Altitude_ControlMode = Position_ControlMode_Position;
					}
					else
					{
						//未起飞
						//等待起飞
						target_position.z =  Position.z + TakeoffHeight;
						Target_tracker[2].x1 = Position.z;
						Target_tracker[2].track3( 50 , 1.0 / CtrlRateHz );
					}
					break;
				}
				case Position_ControlMode_RouteLine:
				{	//飞到指定高度
					
					//设置控制量最大值
					Target_tracker[2].r3p = cfg.maxAutoAccUp[0];
					Target_tracker[2].r3n = cfg.maxAutoAccDown[0];
					Target_tracker[2].r4p = cfg.maxAutoJerkUp[0];
					Target_tracker[2].r4n = cfg.maxAutoJerkDown[0];
					
					if( inFlight )
					{
						//已起飞
						//控制达到目标高度
						Target_tracker[2].r2n = Target_tracker[2].r2p = AutoVelZ;
						Target_tracker[2].track4( target_position.z , 1.0f / CtrlRateHz );
						if( fabs( target_position.z - Position.z ) < 10 && \
								in_symmetry_range( VelocityENU.z , 10.0f ) &&  \
								in_symmetry_range( AccelerationENU.z , 50.0f ) && \
								in_symmetry_range( Target_tracker[2].x2 , 0.1f ) && \
								in_symmetry_range( Target_tracker[2].x3 , 0.1f )	)
							Altitude_ControlMode = Position_ControlMode_Position;
					}
					else
					{
						//未起飞
						//不要起飞
						Target_tracker[2].reset();
						Target_tracker[2].x1 = Position.z;
						Attitude_Control_set_Throttle( 0 );
						goto AltCtrl_Finish;
					}
					break;
				}
				
				case Position_ControlMode_Locking:
				default:
				{	//锁位置(减速到0然后锁住高度)
					if( inFlight )
					{
						Target_tracker[2].track3( 0 , 1.0 / CtrlRateHz );
						if( in_symmetry_range( VelocityENU.z , 10.0 ) && \
								in_symmetry_range( Target_tracker[2].x2 , 0.1 ) && \
								in_symmetry_range( Target_tracker[2].x3 , 0.1 )	)
						{
							target_position.z = Target_tracker[2].x1;
							Altitude_ControlMode = Position_ControlMode_Position;
						}
					}
					else
					{
						Altitude_ControlMode = Position_ControlMode_Position;
						Attitude_Control_set_Throttle( get_STThrottle() );
						goto AltCtrl_Finish;
					}
					break;
				}
			}
		}
		
		if( inFlight )
		{
			//计算期望速度
			double target_velocity_z;
			//期望垂直速度的导数
			double Tvz_1, Tvz_2;
			if( Is_3DAutoMode(Altitude_ControlMode) )
			{
				target_velocity_z = TargetVelocity.z;
				Tvz_1 = TargetVelocity_1.z;
				Tvz_2 = TargetVelocity_2.z;
				Target_tracker[2].reset();
				Target_tracker[2].x1 = target_position.z;
			}
			else
			{
				if( Target_tracker[2].get_tracking_mode() == 4 )
				{
					double max_fb_vel = ( Target_tracker[2].x1 - Position.z ) > 0 ? cfg.maxAutoVelUp[0] : cfg.maxAutoVelDown[0];
					smooth_kp_d2 TvFb = smooth_kp_2(
							Target_tracker[2].x1 - Position.z,
							Target_tracker[2].x2 - VelocityENU.z, 
							Target_tracker[2].x3 - AccelerationENU.z, 
							Ps, max_fb_vel );
					target_velocity_z = TvFb.d0 + Target_tracker[2].x2;
					Tvz_1 = TvFb.d1 + Target_tracker[2].x3;
					Tvz_2 = TvFb.d2 + Target_tracker[2].x4;
				}
				else
				{
					target_velocity_z = Target_tracker[2].x2;
					Tvz_1 = Target_tracker[2].x3;
					Tvz_2 = Target_tracker[2].x4;
				}
			}
			
			//计算期望加速度
			double max_fb_acc = ( target_velocity_z - VelocityENU.z ) > 0 ? cfg.maxAutoAccUp[0] : cfg.maxAutoAccDown[0];
			smooth_kp_d1 TaFb = smooth_kp_1(
					target_velocity_z - VelocityENU.z,
					Tvz_1 - AccelerationENU.z, 
					Pv, max_fb_acc );
			double target_acceleration_z = TaFb.d0 + Tvz_1;
			double target_acceleration_z_1 = TaFb.d1 + Tvz_2;
			//target_acceleration_z = TargetVelocityFilter[2].run( target_acceleration_z );
			//加速度误差
			double acceleration_z_error = target_acceleration_z - AccelerationENU.z;
			
			//获取倾角cosin
			Quaternion quat;
			get_Airframe_quat(&quat);
			double lean_cosin = quat.get_lean_angle_cosin();
			
			//获取电机起转油门
			double MotorStartThrottle = get_STThrottle();
			//获取悬停油门 - 电机起转油门
			double hover_throttle;
			get_hover_throttle(&hover_throttle);
			hover_throttle = hover_throttle - MotorStartThrottle;	
			
			//计算输出油门
			double force, T, b;
			get_throttle_force(&force);
			get_ESO_height_T(&T);
			get_throttle_b(&b);
			if( force < 1 )
				force = 1;
			double throttle = ( force + T * ( acceleration_z_error * Pa + target_acceleration_z_1 ) )/b;
			//倾角补偿
			if( lean_cosin > 0.1 )				
				throttle /= lean_cosin;
			else	//倾角太大
				throttle = (100 - MotorStartThrottle) / 2;
			
			if( inFlight )
			{
				double logbuf[10];
				logbuf[0] = throttle;
				logbuf[1] = hover_throttle;
				logbuf[2] = force;
				logbuf[3] = target_acceleration_z;
				logbuf[4] = AccelerationENU.z;
				SDLog_Msg_DebugVect( "thr", logbuf, 5 );
			}
			
			//油门限幅
			throttle += MotorStartThrottle;
			if( throttle > 90 )
				throttle = 90;
			if( inFlight )
			{
				if( throttle < MotorStartThrottle )
					throttle = MotorStartThrottle;
			}
			
			//侧翻保护
			static uint32_t RollOverProtectCounter = 0;
			if( lean_cosin < 0 )
			{
				if( ++RollOverProtectCounter >= CtrlRateHz*3 )
				{
					RollOverProtectCounter = CtrlRateHz*3;
					throttle = 0;
				}
			}
			else
				RollOverProtectCounter = 0;
			
//			throttle = ThrOut_Filters[2].run(throttle);
			//输出
			Attitude_Control_set_Throttle( throttle );
		}
		else
		{
			//没起飞
			//均匀增加油门起飞
			double throttle;
			get_Target_Throttle(&throttle);
			ThrOut_Filters[2].reset(throttle);
			Attitude_Control_set_Throttle( throttle + 1.0/CtrlRateHz * 15 );
		}
		
	}//高度控制
AltCtrl_Finish:
	return;
}

 

 

发现一个新文件,在crtl_position.cpp右键查看下面这个函数的定义时发现的,是和position一起定义的,我尝试着想看看,因为没有找到position赋值的地方。

这个文件所处的文件夹我之前还真没注意,莫非这部分不开源的?我看到一个lib文件,怪不得我之前找不到啊!!!!不开源的,这样很多东西自己都没法去改啊,他说他弄了好长时间的异常检测,估计这部分不开源。position的值怎么得到的这部分不开源,这样我想尝试一下自己制定只用T265的数据都没法指定了,这样有点不方便。辛亏先把背后基本逻辑挖了下,不然到时候你想弄单纯的SLAM实验可能都弄不了,也不一定,我把其他位置传感器都拔掉只剩T265这样或许应该可以测试。无名只是光流融合部分不开源,这个我无所谓,但是ACfly这个核心关键部分不开源,就给你一些API,我是不太喜欢的。或者找找他以前部分有没有开源,这样在他以前的代码上改改。

他这里自己也说了

https://blog.csdn.net/weixin_40767422/article/details/88081309

 姿态解算是哪些呢,他在用户手册里面也有写,正是我找到的这个

是的,你关心的那些函数都在这个MeasurementSystem.hpp头文件里,比如传感器数据好坏的判断,真正position数据的获取,但是你想查看这些函数的实现,跳转不了。

#pragma once

#include "vector2.hpp"
#include "vector3.hpp"
#include "Quaternion.hpp"
#include "map_projection.hpp"

//获取三字节WGA识别码
void MS_get_WGA( uint32_t* WGA );
//获取正版验证结果
bool MS_WGA_Correct();

//获取当前使用的陀螺仪
uint8_t get_current_use_IMUGyroscope();
//获取当前使用的加速度计
uint8_t get_current_use_IMUAccelerometer();

enum MS_Status
{
	MS_Initializing ,
	MS_Ready ,
	MS_Err ,
};


	struct PosSensorHealthInf1
	{
		//传感器序号
		uint8_t sensor_ind;
		//解算位置
		vector3<double> PositionENU;
		//传感器位置
		double sensor_pos;
		//传感器偏移(传感器健康时更新)
		//HOffset+PositionENU = 传感器估计值
		double HOffset;
		//上次健康时间
		TIME last_healthy_TIME;
		//是否可用(不可用时噪声无效)
		bool available;
		//传感器噪声上下界(传感器-解算)
		double NoiseMin, NoiseMax;
		//速度噪声
		double VNoise;
	};
	struct PosSensorHealthInf2
	{
		//传感器序号
		uint8_t sensor_ind;
		//是否全球定位传感器
		//是才有定位转换信息
		bool global_sensor;
		//定位坐标转换信息
		Map_Projection mp;
		//解算位置
		vector3<double> PositionENU;
		//传感器位置
		vector2<double> sensor_pos;
		//传感器偏移(传感器健康时更新)
		//HOffset+PositionENU = 传感器估计值
		vector2<double> HOffset;
		//上次健康时间
		vector2<TIME> last_healthy_TIME;
		//是否可用(不可用时噪声无效)
		bool available;
		//传感器噪声上下界(传感器-解算)
		vector2<double> NoiseMin, NoiseMax;
		//速度噪声
		vector2<double> VNoise;
	};
	struct PosSensorHealthInf3
	{
		//传感器序号
		uint8_t sensor_ind;
		//是否全球定位传感器
		//是才有定位转换信息
		bool global_sensor;
		//定位坐标转换信息
		Map_Projection mp;
		//解算位置
		vector3<double> PositionENU;
		//传感器位置
		vector3<double> sensor_pos;
		//传感器偏移(传感器健康时更新)
		//HOffset+PositionENU = 传感器估计值
		vector3<double> HOffset;
		//上次健康时间
		vector3<TIME> last_healthy_TIME;
		//是否可用(不可用时噪声无效)
		bool available;
		//传感器噪声上下界(传感器-解算)
		vector3<double> NoiseMin, NoiseMax;
		//速度噪声
		vector3<double> VNoise;		
	};

	
		//获取当前XY传感器
		int8_t get_Current_XYSensor();
	
		//指定序号传感器健康度
		bool get_PosSensorHealth_XY( PosSensorHealthInf2* result, uint8_t sensor_ind, double TIMEOUT = -1 );
		//当前传感器健康度
		bool get_Health_XY( PosSensorHealthInf2* result, double TIMEOUT = -1 );
		//最优测距传感器健康度
		bool get_OptimalRange_XY( PosSensorHealthInf2* result, double TIMEOUT = -1 );
		//最优全球定位传感器健康度
		bool get_OptimalGlobal_XY( PosSensorHealthInf2* result, double TIMEOUT = -1 );
	
	
	
		//获取当前Z传感器
		int8_t get_Current_ZSensor();
	
		//指定序号传感器健康度
		bool get_PosSensorHealth_Z( PosSensorHealthInf1* result, uint8_t sensor_ind, double TIMEOUT = -1 );
		//当前传感器健康度
		bool get_Health_Z( PosSensorHealthInf1* result, double TIMEOUT = -1 );
		//最优测距传感器健康度
		bool get_OptimalRange_Z( PosSensorHealthInf1* result, double TIMEOUT = -1 );
		//最优全球定位传感器健康度
		bool get_OptimalGlobal_Z( PosSensorHealthInf1* result, double TIMEOUT = -1 );
	
	
	
		//指定序号传感器健康度
		bool get_PosSensorHealth_XYZ( PosSensorHealthInf3* result, uint8_t sensor_ind, double TIMEOUT = -1 );
		//最优测距传感器健康度
		bool get_OptimalRange_XYZ( PosSensorHealthInf3* result, double TIMEOUT = -1 );
		//最优全球定位传感器健康度
		bool get_OptimalGlobal_XYZ( PosSensorHealthInf3* result, double TIMEOUT = -1 );
	



	//获取解算系统状态
	MS_Status get_Attitude_MSStatus();

	//获取用于控制的滤波后的角速度
	bool get_AngularRate_Ctrl( vector3<double>* result, double TIMEOUT = -1 );
	//获取姿态四元数
	bool get_Attitude_quat( Quaternion* result, double TIMEOUT = -1 );	
	//获取机体四元数(偏航不对准)
	bool get_Airframe_quat( Quaternion* result, double TIMEOUT = -1 );
	//获取机体四元数(偏航对准)
	bool get_AirframeY_quat( Quaternion* result, double TIMEOUT = -1  );
	//获取历史四元数
	bool get_history_AttitudeQuat( Quaternion* result, double t, double TIMEOUT = -1 );
	//获取历史机体四元数(偏航不对准)
	bool get_history_AirframeQuat( Quaternion* result, double t, double TIMEOUT = -1 );
	//获取历史机体四元数(偏航对准)
	bool get_history_AirframeQuatY( Quaternion* result, double t, double TIMEOUT = -1 );



	//获取解算系统状态
	MS_Status get_Altitude_MSStatus();
	MS_Status get_Position_MSStatus();
	
	//获取实时位置
	bool get_Position( vector3<double>* result, double TIMEOUT = -1 );
	//获取实时速度(东北天方向)
	bool get_VelocityENU( vector3<double>* result, double TIMEOUT = -1 );
	//获取实时地理系加速度(东北天)
	bool get_AccelerationENU( vector3<double>* result, double TIMEOUT = -1 );
	//获取用于控制的滤波后的地理系加速度
	bool get_AccelerationENU_Ctrl( vector3<double>* result, double TIMEOUT = -1 );
	bool get_VelocityENU_Ctrl( vector3<double>* result, double TIMEOUT = -1 );
	bool get_Position_Ctrl( vector3<double>* result, double TIMEOUT = -1 );
	//获取低通滤波后的未补偿(零偏灵敏度温度)的陀螺加速度数据
	bool get_AccelerationNC_filted( vector3<double>* vec, double TIMEOUT = -1 );
	bool get_AngularRateNC_filted( vector3<double>* vec, double TIMEOUT = -1 );



	struct BatteryCfg
	{
		//标准电压(V)
		float STVoltage[2];
		//电压测量增益(V)
		float VoltMKp[2];
		//电流测量增益(A)
		float CurrentMKp[2];
		//容量(W*h)
		float Capacity[2];
		//功率电压点0(0%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP0[2];
		//功率电压点1(10%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP1[2];
		//功率电压点2(20%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP2[2];
		//功率电压点3(30%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP3[2];
		//功率电压点4(40%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP4[2];
		//功率电压点5(50%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP5[2];
		//功率电压点6(60%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP6[2];
		//功率电压点7(70%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP7[2];
		//功率电压点8(80%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP8[2];
		//功率电压点9(90%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP9[2];
		//功率电压点10(100%电量时相对标准电压的电压差,此序列必须递增)
		float VoltP10[2];
	}__PACKED;
	
	//电压
	float get_MainBatteryVoltage();
	//滤波电压(V)
	float get_MainBatteryVoltage_filted();
	//总使用功耗(W*h)
	float get_MainBatteryPowerUsage();
	//滤波功率(W)
	float get_MainBatteryPower_filted();
	//电池电流(A)
	float get_MainBatteryCurrent();
	//CPU温度(℃)
	float get_CPUTemerature();
	//获取电池信息
	void get_MainBatteryInf( float* Volt, float* Current, float* PowerUsage, float* Power_filted, float* RMPercent );

 

说实话我想找一个真开源的飞控,来做SLAM实验。我想起有一个是真开源的,匿名是真开源的。

 

 

 

github上的ACfly似乎开源了这部分,可能放的早期的版本。这还是让我自己有一定折腾的可能性。不对,里面也有两个Lib文件,实际也是没有开源。

https://github.com/weihli/ACFly-Prophet/tree/master/MeasurementSystem

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服