死磕数据结构与算法——查找算法(java实现)。才疏学浅,如有错误,及时指正

   日期:2020-10-03     浏览:158    评论:0    
核心提示:数据结构与算法。查找算法。线性查找算法,二分查找算法,插值查找算法,斐波那契查找算法的基本思路和代码实现。

死磕数据结构与算法——查找算法。才疏学浅,如有错误,及时指正

  • 1. 线性查找算法
    • 思路:
    • 代码
  • 2. 二分查找算法
    • 前提:数组是一个有序的数组。
    • 思路:
    • 代码:
    • 注意:上面只能找到数组的一个下标,
  • 3. 插值查找算法
    • 插值查找的原理:
    • 代码:
  • 4. 斐波那契查找算法(黄金分割法)
    • 思路:
    • 代码:
  • 总结

1. 线性查找算法

思路:

对数组从左到右进行遍历,依次把数组的值与要查找的值进行对比,如果相等,就返回此时的数组下标。如果数组遍历完成之后,依然找不到该值,说明这个数组中没有此值,此时返回-1。
线性查找是最简单的查找算法,但是查找的次数很多。

代码

package Search;

public class SeqSearch { 
    public static void main(String[] args) { 
        int arr[] = { 0, 29, 85, 66, 185, 18, 99};
        int res = seqSearch( arr, 10000 );
        if(res == -1){ 
            System.out.println("没有找到该数据");
        }
        else{ 
            System.out.println(res);
        }
    }
    public static int seqSearch(int arr[], int value){ 
        for (int i = 0; i < arr.length; i++) { 
            if(arr[i] == value){ 
                return i;
            }
        }
        return -1;
    }
}

2. 二分查找算法

前提:数组是一个有序的数组。

思路:

代码:

package Search;

public class BinerySearch { 
    public static void main(String[] args) { 
        int arr[] = { 5, 20, 35, 88, 99, 180 };
        int res = binerySearch( arr, 0, arr.length - 1, 88 );
        System.out.println(res);
    }
    public static int binerySearch(int arr[], int left, int right, int value){ 
        int mid = (left + right) / 2;
        if(left > right){ 
            return -1;
        }else { 
            if(arr[mid] > value){ 
                //向左进行递归
                return binerySearch( arr, left, mid-1, value );
            }
            else if (arr[mid] < value){ 
                //向右进行递归
                return binerySearch( arr, mid+1, right, value );
            }
            else { 
                //说明找到了
                return mid;
            }
        }
    }
}

注意:上面只能找到数组的一个下标,

下面的是怎么找到所有下标的代码:

public static ArrayList<Integer> binerySearch2(int arr[], int left, int right, int value){ 
    //定义一个集合
    ArrayList<Integer> list = new ArrayList<>(  );
    int mid = (left + right) / 2;
    if(left > right){ 
        return list;
    }else { 
        if(arr[mid] > value){ 
            //向左进行递归
            return binerySearch2( arr, left, mid-1, value );
        }
        else if (arr[mid] < value){ 
            //向右进行递归
            return binerySearch2( arr, mid+1, right, value );
        }
        else { 
            list.add( mid );
            //找到之后不要返回,向左扫描找到所有的值
            int temp = mid - 1;
            while(true){ 
                if(temp < 0 || arr[temp] != value){ 
                    break;
                }
                list.add(temp);
                temp--;
            }
            //找到之后不要返回,向左递归找到所有的值
            temp = mid + 1;
            while(true){ 
                if(temp > arr.length-1 || arr[temp] != value){ 
                    break;
                }
                list.add(temp);
                temp++;
            }
            return list;
        }
    }
}

3. 插值查找算法

插值查找的原理:

插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。
将折半查找中的求mid 索引的公式 , low 表示左边索引left, high表示右边索引right.key 就是前面我们讲的 value
int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;/插值索引/对应前面的代码公式:int mid = left + (right – left) * (value– arr[left]) / (arr[right] – arr[left])

代码:

package Search;

public class InsertValueSearch { 
    public static void main(String[] args) { 
        int arr[] = new int[100];
        for (int i = 0; i < 100; i++) { 
            arr[i] = i + 1;
        }
        int res = insertSearch( arr, 0, arr.length - 1, 100 );
        System.out.println(res);
    }
    public static int insertSearch(int arr[], int left, int right, int value){ 
        if(left > right || value < arr[0] || value > arr[arr.length - 1]){ 
            return -1;
        }
        //利用公式求出mid
        int mid = left + (right - left) * (value - arr[left]) / (arr[right] - arr[left]);
        if(arr[mid] < value){ 
            //向右递归
            return insertSearch( arr, mid + 1, right, value );
        }
        else if(arr[mid] > value){ 
            //向左递归
            return insertSearch( arr, left, mid - 1, value );
        }
        else { 
            //找到该值
            return mid;
        }
    }
}

4. 斐波那契查找算法(黄金分割法)

思路:

黄金分割: 黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
斐波那契查找原理:利用斐波那契数列改变中间节点mid的位置,mid位于黄金分割点附近。
由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如图所示。从而中间位置为mid=low+F(k-1)-1
类似的,每一子段也可以用相同的方式分割
但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可

代码:

package Search;

import java.util.Arrays;

public class fibonacciSearch { 
    public static int maxSize = 20;
    public static void main(String[] args) { 
        int arr[] = { 1,9,11,90,1000,1500};
        System.out.println(fibSearch( arr,5646456 ));
    }
    //构建斐波那契数列
    public static int[] fib(){ 
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) { 
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;

    }

    //编写斐波那契查找算法

    
    public static int fibSearch(int arr[],int key){ 
        int low = 0;
        int high = arr.length - 1;
        int k = 0;  //表示斐波那契分割数值的下标
        int mid = 0;
        int f[] = fib(); //获取斐波那契数列
        //获取斐波那契分割数值得下标
        while(high > f[k] - 1 ){ 
            k ++;
        }
        //因为f[k]的值可能大于数组的长度,所以重新构造一个数组,并且指向arr
        int[] temp = Arrays.copyOf(arr, f[k]);
        //使用arr数组的最后一个数填充temp
        for (int i = high + 1; i < temp.length; i++) { 
            temp[i] = arr[high];
        }

        //使用while循环查找的数key
        while(low <= high){ 
            //条件满足一直找
            mid = low + f[k-1] - 1;
            if(key < temp[mid]){ 
                //向左边查找
                high = mid - 1;
                k--;
            }else if(key > temp[mid]){ 
                //向右边查找
                low = mid + 1;
                k = k - 2;
            }else { 
                //找到
                //确定哪个是下标
                if(mid <= high){ 
                    return mid;
                }else{ 
                    return high;
                }
            }
        }
        return -1;
    }
}


总结

本文简单的阐述了4中基本的查找算法。分别介绍了线性查找算法,二分查找算法,插值查找算法,斐波那契查找算法的基本思路以及使用代码进行了实现。
查找算法有很多种,每一种都有各自的优缺点。在写代码的过程中,首先脑子中得有这些基本算法的印象,遇到复杂的问题时,要学会选择正确的算法,以便让我们的代码性能更好。
 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服