立体图像编码解码

   日期:2020-09-30     浏览:106    评论:0    
核心提示:根据相关参考资料说明,图像编码解码的大致结构框图如下所示: 本系统,我们主要将完成这个结构框图中介绍的各个模块。2.各个模块设计与仿真function im_encode(left_name, right_name, parameter);发送端的说明2.1 获得左右两个图像·MATLAB代码imag_L = imread('stereo_images/corridor1.pgm');imag_R = imread('stereo_images/cor...

     根据相关参考资料说明,图像编码解码的大致结构框图如下所示:

    本系统,我们主要将完成这个结构框图中介绍的各个模块。

2.各个模块设计与仿真

function im_encode(left_name, right_name, parameter);

发送端的说明

2.1 获得左右两个图像

·MATLAB代码

imag_L = imread('stereo_images/corridor1.pgm');

imag_R = imread('stereo_images/corridor2.pgm');

figure(1);

subplot(121),imshow(imag_L);title('left');

subplot(122),imshow(imag_R);title('right');

·仿真效果

图2 左右眼睛看到的图像

·代码说明

    通过读取两个图片,来模拟人两个眼睛所看到的图像。

2.2 Transform模块

    这个模块主要使用DCT变换,但是这里设计到一个问题,就是将两个图片信号变为一路信号的问题。就本课题而言,这里有以下几个方法实现;

·由于这两个图片是双目信号,所以可以先进行立体匹配得到一个图片,然后再接收端分解成两个双目图片;

·由小波分解进行融合得到一路信号,然后在接收端进行反变换,但是这种做法也较复杂。

·进行图片的采样处理,对两个图片进行间隔采样,然后在接收端进行内插得到原图像,这种方法比较简单,本模块采用这个方法。

    其代码如下所示:

 

[R,L] = size(imag_L);

for i = 1:R

    for j = 1:L

         if mod(i+j,2)==0

         image(i,j) =  imag_L(i,j);

         else

         image(i,j) =  imag_R(i,j);   

         end

    end

end

 

2.3 DCT变换

   我们在这里使用MATLAB内部的dct2函数。这里就不多做介绍了。其仿真结果如下所示:

其代码如下所示:

DCT_out = dct2(image);

 

2.4 ZIGZAG算法

    其基本原理如下所示:

通过这个方法,我们可以将一个图像的二维数据变为一个串行的数据流。

其对应的代码如下所示:

function [y]=toZigzag(x)

% transform a matrix to the zigzag format

 [row col]=size(x);

 

if row~=col

   disp('toZigzag() fails!! Must be a square matrix!!');

   return

end

y=zeros(row*col,1);

count=1;

for s=1:row

   if mod(s,2)==0

      for m=s:-1:1

         y(count)=x(m,s+1-m);

         count=count+1;

      end;

   else

      for m=1:s

         y(count)=x(m,s+1-m);

         count=count+1;

      end

   end

end

if mod(row,2)==0

   flip=1;

else

   flip=0;

end

for s=row+1:2*row-1

   if mod(flip,2)==0

      for m=row:-1:s+1-row

         y(count)=x(m,s+1-m);

         count=count+1;

      end

   else

      for m=row:-1:s+1-row

         y(count)=x(s+1-m,m);

         count=count+1;

      end;

   end;

   flip=flip+1;

end

 

  μ律(m-Law)压扩主要用在北美和日本等地区的数字电话通信中。m为确定压缩量的参数,它反映最大量化间隔和最小量化间隔之比,通常取100≤m≤500。由于m律压扩的输入和输出关系是对数关系,所以这种编码又称为对数PCM。

  A律(A-Law)压扩主要用在欧洲和中国大陆等地区的数字电话通信中。A为确定压缩量的参数,它反映最大量化间隔和最小量化间隔之比。A律压扩的前一部分是线性的,其余部分与μ律压扩相同。

15折线特性给出的小信号的信号量噪比约是13折线特性的两倍。      但是,对于大信号而言,15折线特性给出的信号量噪比要比13折线特性时稍差。在保证小信号的量化间隔相等的条件下,均匀量化需要11比特编码,而非均匀量化只要7比特就够了。

    其对应的待明如下所示:

function ypcm=mulaw(yn)

x=yn;

s=sign(x);                            

x=abs(x);                            

ypcm=zeros(length(x),1);

%进行基于15折线的分段映射

for i=1:length(x)                  

    if x(i)<1/255              %序列值位于第1折线

        ypcm(i)=255/8*x(i);

    elseif x(i)<3/255           %序列值位于第2折线

        ypcm(i)=255/16*x(i)+1/16;

    elseif x(i)<7/255           %序列值位于第3折线

        ypcm(i)=255/32*x(i)+5/32;

    elseif x(i)<15/255          %序列值位于第4折线

        ypcm(i)=255/64*x(i)+17/64;

    elseif x(i)<31/255          %序列值位于第5折线

        ypcm(i)=255/128*x(i)+49/128;

    elseif x(i)<63/255          %序列值位于第6折线

        ypcm(i)=255/256*x(i)+129/256;

    elseif x(i)<127/255         %序列值位于第7折线

        ypcm(i)=255/512*x(i)+321/512;

    else                     %序列值位于第8折线

        ypcm(i)=255/1024*x(i)+769/1024;

    end

end

ypcm=ypcm.*(2^7);   

ypcm=floor(ypcm);

ypcm=ypcm.*s;

2.6 编码模块

    发送的最后我们需要将量化后的数据进行压缩,得到二进制比特率进行发送,这里我们使用huffman编码。Huffman编码的基本原理如下所示:

哈夫曼编码是用于数据文件压缩的一个十分有效的编码方法,其压缩率通常在20%~90%之间。哈夫曼编码算法使用字符在文件中出现的频率表来建立一个0,1串,以表示各个字符的最优表示方式。

      它是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种。 Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长 度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。 以哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。这种方法是由David.A.Huffman发展起来的。 例如,在英文中,e的出现概率很高,而z的出现概率则最低。当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位(bit)来表示,而z则可能花去25个位(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。

根据变长最佳编码定理,Huffman编码步骤如下:

(1)将信源符号xi按其出现的概率,由大到小顺序排列。

(2)将两个最小的概率的信源符号进行组合相加,并重复这一步骤,始终将较大的概率分支放在上部,直到只剩下一个信源符号且概率达到1.0为止;

(3)对每对组合的上边一个指定为1,下边一个指定为0(或相反:对上边一个指定为0,下边一个指定为1);

(4)画出由每个信源符号到概率1.0处的路径,记下沿路径的1和0;

(5)对于每个信源符号都写出1、0序列,则从右到左就得到非等长的Huffman码。

其对应的代码如下所示:

function [compression,dict] = huffman_module(image);

s = image;

%entropy

p = hist(s,length(s)); 

idx=find(p~=0); 

prob=p(idx)/length(s);

entropy=-prob*log2(prob)';

%redundancy

entropymax=log2(length(prob));

redundancy=(entropymax-entropy)/entropymax;

reff=sort(s);

ref2=reff(2:end);

ref=reff(1:end-1);

chg=ref2-ref;

idx2=find(chg~=0);

sig=ref2(idx2);

symbols=[ref(1);sig];

%huffman table

set(0,'RecursionLimit',2000);

[dict,avglen] = huffmandict(symbols,prob);

% %huffman encoder

compression = huffmanenco(s,dict);

3.各个模块设计与仿真

3.系统总体仿真说明

    系统的仿真结果如下所示:

 

读入两个图片

 

 

 

 

 

DCT变换值

 

量化值

 

压缩比特流

 

 

最后接收到的双目图片。

最后我们可以得到PSNR值为

 

 

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服