前言:
临近国庆节,自己的一个小圈子微信群的伙伴们发了一张图片,是网上流传的字节跳动的面试题编码,闲的无事就思索了下,发现都不难,都是对基础的数学知识的考量。先上图吧!
当然40分钟,我也无法把任意两题编码完成,只是知道大概的解题思路,唯一能确定的,在面试规定时间内,第二题我是肯定可以在20分钟内编码完成。
正题
题目一
基础知识就是初中的平面直角坐标系,解析思路:
- 计算总周长;
- 将各边长的前后坐标计算出来封装好,第四步要使用;
- 根据K段值计算出平均分段后的长度;
- 然后循环K次,根据平均长度依次相加计算等分点的坐标。
不多说,上代码:
先定义坐标的Point类
class Point {
float x;
float y;
public Point() {
}
public Point(float x, float y) {
this.x = x;
this.y = y;
}
public Point(Point point) {
this(point.x, point.y);
}
@Override
public String toString() {
return "Point, x:" + x + " y:" + y;
}
}
N边形的边封装类
class Line {
Point begin;
Point end;
float length;
public Line() {
}
public Line(Point begin, Point end, float length) {
this.begin = begin;
this.end = end;
this.length = length;
}
}
现在上实现计算的类
这段代码第一个版本的时候,在正方形偶数等分的时候,坐标点计算不准确,今晚上看着代码思考了10分钟的样子,稍微改动了下,暂时没有这个bug了。其他的bug,期待大家一起发现,然后修复吧!
public class Polygon {
private static float lineLength(Point a, Point b) {
float length;
if (a.x == b.x) {
// 垂直线条
length = Math.abs(a.y - b.y);
} else {
length = Math.abs(a.x - b.x);
}
return length;
}
private static float totalSideLength(Point[] points, Line[] lines) {
float side = 0;
for (int i = 1; i < points.length; i++) {
Point prev = points[i - 1];
Point point = points[i];
float length = lineLength(prev, point);
side += length;
lines[i - 1] = new Line(prev, point, length);
if (i == points.length - 1) {
length = lineLength(point, points[0]);
side += length;
lines[i] = new Line(point, points[0], length);
}
}
return side;
}
public static Point[] division(Point[] points, int divisionNum) {
Point[] divisionPoint = new Point[divisionNum];
// 计算周长
Line[] lines = new Line[points.length];
float side = totalSideLength(points, lines);
// 等分长度
float divisionLength = side / divisionNum;
int lineIndex = -1;
float sumLength = 0;
for (int i = 0; i < divisionNum; i++) {
if (i == 0) {
// 第一个等分点直接是起始点坐标
divisionPoint[i] = new Point(points[0]);
continue;
}
divisionPoint[i] = new Point();
float lineLength = divisionLength * i;
while (true) {
Line line;
if (sumLength < lineLength) {
lineIndex++;
line = lines[lineIndex];
sumLength += line.length;
} else
line = lines[lineIndex];
if (sumLength >= lineLength) {
float temp = sumLength - lineLength;
if (line.begin.x == line.end.x) {
// begin和end的坐标点垂直
divisionPoint[i].x = line.begin.x;
if (line.end.y > line.begin.y)
divisionPoint[i].y = line.end.y - temp;
else
divisionPoint[i].y = line.end.y + temp;
} else {
// begin和end的坐标点水平
divisionPoint[i].y = line.end.y;
if (line.end.x > line.begin.x)
divisionPoint[i].x = line.end.x - temp;
else
divisionPoint[i].x = line.end.x + temp;
}
break;
}
}
}
return divisionPoint;
}
private static void print(Point[] points) {
for (int i = 0; i < points.length; i++) {
System.out.println("第" + (i + 1) + "等分点, x:" + points[i].x + ",y:" + points[i].y);
}
}
public static void main(String[] args) {
Point[] points = new Point[] { new Point(0, 0), new Point(0, 1), new Point(1, 1), new Point(1, 0) };
Point[] divPoints = division(points, 8);
print(divPoints);
}
}
题目二
解题思路:
对应位数的数字相加,永远不会超过18,所以,我们就先把对应位置的和计算出来,然后再反复循环找到大于9的数,向高位进位。
这个比较简单,只是考察个位数的正整数加法永远不大于18这个细节。
上代码:
public class LinkAddition {
static class NumNode {
public int num;
public NumNode next;
public NumNode() {
}
public NumNode(int num) {
this.num = num;
};
public NumNode(int num, NumNode next) {
this(num);
this.next = next;
}
}
private static int length(NumNode num) {
int length = 0;
NumNode temp = num;
while (temp != null) {
length++;
temp = temp.next;
}
return length;
}
private static NumNode calc(NumNode a, NumNode b, int aLength, int bLength) {
NumNode aNode = a;
NumNode bNode = b;
NumNode result = new NumNode();
NumNode resultNode = result;
// 计算b链表再a中的起始索引
int aStartIndex = aLength - bLength;
for (int i = 0; i < aLength; i++) {
if (i >= aStartIndex) {
resultNode.num = aNode.num + bNode.num;
bNode = bNode.next;
} else
resultNode.num = aNode.num;
aNode = aNode.next;
if (aNode != null) {
resultNode.next = new NumNode();
resultNode = resultNode.next;
}
}
return result;
}
public static NumNode addition(NumNode a, NumNode b) {
NumNode result = null;
// 计算位数
int aLength = length(a);
int bLength = length(b);
if (aLength > bLength) {
result = calc(a, b, aLength, bLength);
} else {
result = calc(b, a, bLength, aLength);
}
boolean isGreater9 = true;
while (isGreater9) {
isGreater9 = false;
NumNode node = result;
while (node != null) {
// 检查是否有大于9的节点
if (node.num > 9) {
isGreater9 = true;
break;
}
node = node.next;
}
// 没有大于9且需要进位的节点
if (!isGreater9)
break;
node = result;
if (node.num > 9) {
// 头节点的内容跟大于9,需要进位
result = new NumNode(1, node);
node.num = node.num - 10;
}
while (node.next != null) {
if (node.next.num > 9) {
node.num += 1;
node.next.num = node.next.num - 10;
}
node = node.next;
}
}
return result;
}
private static void print(NumNode num) {
NumNode node = num;
while (node != null) {
System.out.print(node.num);
node = node.next;
}
}
public static void main(String[] args) {
NumNode a = new NumNode(9);
a.next = new NumNode(9, new NumNode(9));
NumNode b = new NumNode(9);
// b.next = new NumNode(9, new NumNode(9));
NumNode result = addition(a, b);
print(result);
}
}
题目三
这个我写的第一个版本,只契合类那个举例,然后瞬间就被我推翻类,最后坐下思考类10分钟,把这个按照二维数组的思路解析了。
先找到最高处,然后就以最高处为一个维度,做循环计算出水量,还是上代码吧:
public class Water {
public static int waterNum(int[] steps) {
int waterNum = 0;
int max = steps[0];
for (int i = 1; i < steps.length; i++) {
if (max < steps[i])
max = steps[i];
}
for (int i = 0; i < max; i++) {
int num = 0, index = 0;
for (int n = 0; n < steps.length; n++) {
if (steps[n] - i > 0) {
if (num > 0) {
waterNum += n - index - 1;
}
num = steps[n] - i;
index = n;
}
}
}
return waterNum;
}
public static void main(String[] args) {
int[] steps = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 3, 0, 1 };
int water = waterNum(steps);
System.out.println(water);
}
}
总结:
其实这几题本身的知识点并不难,都是平时用到的,就看怎么转化为代码罢了。
第一题考察的直角坐标系上怎么计算边长,然后根据均分等长从第一条边挨着走,计算对应的坐标,该知识点在初中就已学过。
第二题则是考察每位上的正整数加法到底最大能到多少,只要明白了这一点,把每一位上相加后,再统一做进位处理就可以了。
第三题的代码量是最少的,我的解题思路是二位数组的方式, 也不算难。
近段时间正值找工作的最佳时间,本人将一些各大厂商的面试题和今年(2020)最新资料的收集,以下是部分资料截图(所有资料均已整合成文档,pdf压缩打包处理)。
如有有需要的朋友可以点击这里来获取资料,暗号:qf