利用celebA数据集训练MTCNN网络

   日期:2020-09-23     浏览:102    评论:0    
核心提示:利用celebA数据集训练MTCNN网络celebA数据集简介训练数据的处理网络和训练侦测部分结果展示有问题可以联系我的邮箱:2487429219@qq.com关于MTCNN网络可以看我上一篇博客:链接: 人脸检测算法:mtcnn简介celebA数据集简介CelebA数据集包含202,599张名人人脸图片,有人脸框,特征点等标注信息,数据量大,可以用来训练mtcnn网络,官方下载链接:celebA下载链接里共有多个下载选项,我选择使用的是In-The-Wild Images,具体每个选择代表什么含

利用celebA数据集训练MTCNN网络

  • celebA数据集简介
  • 训练数据的处理
  • 网络和训练
  • 侦测部分
  • 结果展示

有问题可以联系我的邮箱:2487429219@qq.com
关于MTCNN网络可以看我上一篇博客:链接: 人脸检测算法:mtcnn简介

celebA数据集简介

CelebA数据集包含202,599张名人人脸图片,有人脸框,特征点等标注信息,数据量大,可以用来训练mtcnn网络,官方下载链接:celebA

下载链接里共有多个下载选项,我选择使用的是In-The-Wild Images,具体每个选择代表什么含义可以参照网上的celebA数据集详解。

如果官方的链接下载不了或者速度太慢,可以去网上搜bdy链接。

下载完成后会有如下文件:

其中img_celeba文件夹里面是202, 599名人图片,但是图片不仅仅是包含人的脸部,需要进一步处理,这个后文会说明。

Eval文件夹里的内容在我训练mtcnn时并没有用到,这里不介绍,有兴趣可以去查找celebA数据集介绍。

Anno文件夹里面是对数据的一些标注,在训练人脸检测时,我只用到了人脸框和特征点的标注,对应list_bbox_celeba.txt和list_landmarks_celeba.txt

训练数据的处理

由于我们下载的celebA数据集的数据并非只有人的脸部,所以在数据上我们需要进行一些处理。利用标注好的人脸框从原数据中裁剪出人脸并做好标注,获得训练用的数据集。
并且由于PNet,RNet,ONet所需要的数据大小不同(分别对应12,24,48),我们需要为每个网络准备对应的数据。多说无益,代码如下:
这是iou计算:

import numpy as np


def iou(box, bbox, ismin=False):
    """ :param box: true box :param bbox: other boxes :param ismin: Whether to use min mode :return: iou value """
    x1, y1, x2, y2 = box[0],  box[1],  box[2],  box[3]
    _x1, _y1, _x2, _y2 = bbox[:, 0], bbox[:, 1], bbox[:, 2], bbox[:, 3]
    # the area
    area1 = (x2 - x1) * (y2 - y1)
    area2 = (_x2 - _x1) * (_y2 - _y1)
    # find out the intersection
    xx1, yy1, xx2, yy2 = np.maximum(x1, _x1), np.maximum(y1, _y1), np.minimum(x2, _x2), np.minimum(y2, _y2)
    w, h = np.maximum(0, xx2-xx1), np.maximum(0, yy2-yy1)
    inter_area = w*h
    # the list to save the iou value
    iou_box = np.zeros([bbox.shape[0], ])
    # Prevents zeros from being divided.
    zero_index = np.nonzero(inter_area == 0)
    no_zero = np.nonzero(inter_area)
    iou_box[zero_index] = 0
    if ismin:
        iou_box[no_zero] = inter_area[no_zero] / (np.minimum(area1, area2)[no_zero])
    else:
        iou_box[no_zero] = inter_area[no_zero] / ((area1 + area2 - inter_area)[no_zero])
    return iou_box

if __name__ == '__main__':
    box1 = [100, 100, 200, 200]
    bbox1 = np.array([[100, 90, 200, 200], [120, 120, 180, 180], [200, 200, 300, 300]])
    a = iou(box1, bbox1)
    print(a.shape)
    print(a)


iou的概念不理解的可以看一下我上一篇博客:链接: 人脸检测算法:mtcnn简介
这是获取数据的文件:

from PIL import Image
import os
import numpy as np
import utils


def gen_data(path, size):
    """ :param path: the path of images and label files :param size: the size of the img data """
    box_file = os.path.join(path, r'Anno/list_bbox_celeba.txt')  # the box label file
    landmarks_file = os.path.join(path, r'Anno/list_landmarks_celeba.txt')  # the landmarks label file

    saved_path = r'T:\mtcnn\celebA'  # the save path of label files and homologous images
    if not os.path.exists(saved_path):
        os.makedirs(saved_path)
    box_content = open(box_file, 'r', encoding='utf-8').readlines()  # the content of the box label file
    # the content of the landmarks label file
    landmarks_content = open(landmarks_file, 'r', encoding='utf-8').readlines()

    if not os.path.exists(os.path.join(saved_path, str(size))):
        os.makedirs(os.path.join(saved_path, str(size), r'positive'))
        os.makedirs(os.path.join(saved_path, str(size), r'negative'))
        os.makedirs(os.path.join(saved_path, str(size), r'part'))

    positive_num = 0
    negative_num = 0
    part_num = 0

    # txt to save the label
    f_positive = open(os.path.join(saved_path, str(size), 'positive.txt'), 'w', encoding='utf-8')
    f_part = open(os.path.join(saved_path, str(size), 'part.txt'), 'w', encoding='utf-8')
    f_negative = open(os.path.join(saved_path, str(size), 'negative.txt'), 'w', encoding='utf-8')
    f_positive_landmark = open(os.path.join(saved_path, str(size), 'positive_landmark.txt'), 'w', encoding='utf-8')
    f_part_landmark = open(os.path.join(saved_path, str(size), 'part_landmark.txt'), 'w', encoding='utf-8')
    f_negative_landmark = open(os.path.join(saved_path, str(size), 'negative_landmark.txt'), 'w', encoding='utf-8')

    for i, content in enumerate(box_content):
        if i < 2:  # skip the first two lines
            continue
        content_list = content.strip().split()  # the list to save a line of the box file's content
        landmarks_list = landmarks_content[i].strip().split()  # the list to save a line of the landmark file's content
        img = Image.open(os.path.join(os.path.join(path, r'img_celeba'), content_list[0]))
        # the times to use one image
        for _ in range(3):
            # Gets the coordinates and size of the box starting point
            x, y, w, h = int(content_list[1]), int(content_list[2]), int(content_list[3]), int(content_list[4])
            x1, y1, x2, y2 = x, y, x+w, y+h
            # Randomly crop the picture
            cx, cy = int(x + w / 2), int(y + h / 2)
            _cx, _cy = cx + np.random.randint(-0.2 * w, 0.2 * w + 1), cy + np.random.randint(-0.2 * h, 0.2 * h + 1)
            _w, _h = w + np.random.randint(-0.2 * w, 0.2 * w + 1), h + np.random.randint(-0.2 * h, 0.2 * h + 1)
            _x1, _y1, _x2, _y2 = int(_cx - _w / 2), int(_cy - _h / 2), int(_cx + _w / 2), int(_cy + _h / 2)
            # get the landmark point
            ex1, ey1, ex2, ey2 = int(landmarks_list[1]), int(landmarks_list[2]), int(landmarks_list[3]), int(landmarks_list
                                                                                                             [4])
            nx1, ny1, mx1, my1 = int(landmarks_list[5]), int(landmarks_list[6]), int(landmarks_list[7]), int(landmarks_list
                                                                                                             [8])
            mx2, my2 = int(landmarks_list[9]), int(landmarks_list[10])
            nex1, ney1, nex2, ney2 = (ex1 - _x1), (ey1 - _y1), (ex2 - _x1), (ey2 - _y1)
            nnx1, nny1, nmx1, nmy1 = (nx1 - _x1), (ny1 - _y1), (mx1 - _x1), (my1 - _y1)
            nmx2, nmy2 = (mx2 - _x1), (my2 - _y1)

            # Cut out pictures
            crop_img = img.crop([_x1, _y1, _x2, _y2])
            crop_img = crop_img.resize([size, size])

            # calculate the iou value
            iou = utils.iou([x1, y1, x2, y2], np.array([[_x1, _y1, _x2, _y2]]))
            # calculate the offset value
            try:
                _x1_off, _y1_off, _x2_off, _y2_off = (x1 - _x1)/_w, (y1 - _y1)/_h, (x2 - _x2)/_w, (y2 - _y2)/_h
            except ZeroDivisionError:
                continue

            if iou > 0.65:
                crop_img.save(os.path.join(saved_path, str(size), r'positive', r'%s.jpg' % positive_num))
                f_positive.write(f'{positive_num}.jpg 1 {_x1_off} {_y1_off} {_x2_off} {_y2_off}\n')
                f_positive_landmark.write(f"{positive_num}.jpg {nex1/_w} {ney1/_h} {nex2/_w} {ney2/_h} {nnx1/_w} {nny1/_h} {nmx1/_w} {nmy1/_h} "
                                          f"{nmx2/_w} {nmy2/_h}\n")
                f_positive.flush()
                positive_num += 1

            elif iou > 0.4:
                crop_img.save(os.path.join(saved_path, str(size), r'part', r'%s.jpg' % part_num))
                f_part.write(f'{part_num}.jpg 2 {_x1_off} {_y1_off} {_x2_off} {_y2_off}\n')
                f_part_landmark.write(f"{part_num}.jpg {nex1/_w} {ney1/_h} {nex2/_w} {ney2/_h} {nnx1/_w} {nny1/_h} {nmx1/_w} {nmy1/_h} "
                                          f"{nmx2/_w} {nmy2/_h}\n")
                f_part.flush()
                part_num += 1

            elif iou < 0.29:
                crop_img.save(os.path.join(saved_path, str(size), r'negative', r'%s.jpg' % negative_num))
                f_negative.write(f'{negative_num}.jpg 0 0 0 0 0\n')
                f_negative_landmark.write(f'{negative_num}.jpg 0 0 0 0 0 0 0 0 0 0\n')
                negative_num += 1

            # get the negative data
            w, h = img.size
            _x1, _y1 = np.random.randint(0, w), np.random.randint(0, h)
            _w, _h = np.random.randint(0, w - x1), np.random.randint(0, h - y1)
            _x2, _y2 = x1 + _w, y1 + _h
            crop_img1 = img.crop([_x1, _y1, _x2, _y2])
            crop_img1 = crop_img1.resize((size, size))
            iou = utils.iou(np.array([x1, y1, x2, y2]), np.array([[_x1, _y1, _x2, _y2]]))
            if iou < 0.29:
                crop_img1.save(os.path.join(saved_path, str(size), r'negative', r'%s.jpg' % negative_num))
                f_negative.write(f'{negative_num}.jpg 0 0 0 0 0\n')
                f_negative_landmark.write(f'{negative_num}.jpg 0 0 0 0 0 0 0 0 0 0\n')
                negative_num += 1
        if i % 1000 == 0:
            print("%s/202599" % (i+1))
    # close the file
    f_positive.close()
    f_positive_landmark.close()
    f_part.close()
    f_part_landmark.close()
    f_negative.close()
    f_negative_landmark.close()


if __name__ == '__main__':
    gen_data(r'F:\\', 12)

这边我注释可能写的不太清楚,我对一些地方稍作解释:

  1. 我获取的不仅仅是正样本数据,即有人脸的数据,为了训练网络,我需要给网络投喂一些负样本数据,部分样本数据其实可以不需要。获取正样本和负样本数据的方法是,在人脸所在框附近小范围随机裁剪,再和原框位置计算iou,iou大于0.65的记为正样本,0.4到0.65之间的记为部分样本。


    获取负样本的方法则较为简单,直接在图片中随机裁剪,iou小于0.29的记为负样本。
    用这样的方法获取样本,可以获取更多的数据,利于训练。

  2. 每张图片我们裁剪多次,以充分利用数据,裁剪后resize成对应大小。

  3. 记录框和特征点的坐标时,采用的是记录偏移量,这样可以提高准确度,网络输出的也是偏移量,所以最后侦测的时候需要反算一波。

网络和训练

下面是网络,这部分没什么好介绍的,看网络结构对着写就可以:

import torch.nn as nn
import torch


class PNet(nn.Module):
    def __init__(self):
        super(PNet, self).__init__()

        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 10, kernel_size=3, stride=1, padding=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(10, 16, kernel_size=3, stride=1),
            nn.PReLU(),
            nn.Conv2d(16, 32, kernel_size=3, stride=1),
            nn.PReLU(),
        )
        self.offset_layer = nn.Conv2d(32, 4, kernel_size=1, stride=1)
        self.landmark_layer = nn.Conv2d(32, 10, kernel_size=1, stride=1)
        self.confidence_layer = nn.Conv2d(32, 1, kernel_size=1, stride=1)

    def forward(self, x):
        x = self.pre_layer(x)
        offset = self.offset_layer(x)
        landmark = self.landmark_layer(x)
        confidence = torch.sigmoid(self.confidence_layer(x))
        return offset, landmark, confidence


class RNet(nn.Module):
    def __init__(self):
        super(RNet, self).__init__()

        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 28, kernel_size=3, stride=1, padding=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(28, 48, kernel_size=3, stride=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(48, 64, kernel_size=2, stride=1),
            nn.PReLU(),
        )
        self.linear = nn.Sequential(
            nn.Linear(64 * 3 * 3, 128),
            nn.PReLU()
        )
        self.offset = nn.Linear(128, 4)
        self.landmark = nn.Linear(128, 10)
        self.confidence = nn.Linear(128, 1)

    def forward(self, x):
        x = self.pre_layer(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        offset = self.offset(x)
        landmark = self.landmark(x)
        confidence = torch.sigmoid(self.confidence(x))
        return offset, landmark, confidence


class ONet(nn.Module):
    def __init__(self):
        super(ONet, self).__init__()

        self.pre_layer = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(32, 64, kernel_size=3, stride=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.PReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(64, 128, kernel_size=2, stride=1),
            nn.PReLU(),
        )
        self.linear = nn.Sequential(
            nn.Linear(128*3*3, 256),
            nn.PReLU()
        )
        self.offset = nn.Linear(256, 4)
        self.landmark = nn.Linear(256, 10)
        self.confidence = nn.Linear(256, 1)

    def forward(self, x):
        x = self.pre_layer(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        offset = self.offset(x)
        landmark = self.landmark(x)
        confidence = torch.sigmoid(self.confidence(x))
        return offset, landmark, confidence

这是训练:

from torch.utils.data import DataLoader
import torch
import sample
import os
import nets
import torch.nn as nn


class Trainer:
    def __init__(self, net, save_path, dataset_path, iscuda=True):
        """ :param net: the net to train :param save_path: the param's save path :param dataset_path: dataset path :param iscuda: is to use cuda """
        self.net = net  # nets to train
        self.save_path = save_path  # the path to save the trained model
        self.dataset_path = dataset_path  # the dataset path
        self.iscuda = iscuda
        # use cuda to speed up
        if iscuda:
            self.net.cuda()
        # load the saved model
        if os.path.exists(self.save_path):
            self.net.load_state_dict(torch.load(self.save_path))
        # confidence loss function
        self.conf_loss = nn.BCELoss()  # 二分类交叉熵损失函数
        # offset and landmark loss function
        self.label_loss = nn.MSELoss()  # 均方损失函数
        # optimizer
        self.optimizer = torch.optim.Adam(self.net.parameters())

    def train(self):
        face_data = sample.FaceDataSet(self.dataset_path)  # get the sample
        # get the face loader
        face_loader = DataLoader(face_data, batch_size=512, shuffle=True, num_workers=4, drop_last=True)
        for _ in range(50):
            for i, (img, offset, landmark, conf) in enumerate(face_loader):
                if self.iscuda:
                    img = img.cuda()
                    offset = offset.cuda()
                    landmark = landmark.cuda()
                    conf = conf.cuda()
                # use net to predict
                _offset, _landmark, _conf = self.net(img)
                _offset, _landmark, _conf = _offset.view(-1, 4), _landmark.view(-1, 10), _conf.view(-1, 1)
                # print(_conf)
                # get the positive and index
                label_index = torch.nonzero(conf > 0)
                # get the loss
                offset_loss = self.label_loss(_offset[label_index[:, 0]], offset[label_index[:, 0]])
                landmark_loss = self.label_loss(_landmark[label_index[:, 0]], landmark[label_index[:, 0]])
                # get the positive and negative index
                conf_index = torch.nonzero(conf < 2)
                # get the loss
                conf_loss = self.conf_loss(_conf[conf_index[:, 0]], conf[conf_index[:, 0]])
                # all loss
                loss = offset_loss + landmark_loss + conf_loss
                # clear the gradient
                self.optimizer.zero_grad()
                # calculate the gradient
                loss.backward()
                # optimizer
                self.optimizer.step()

                # save the model
                if (i + 1) % 300 == 0:
                    print(f"i:{i//300} loss:{loss.cpu().data} conf:{conf_loss.cpu().data} offset:"
                          f"{offset_loss.cpu().data} landmark:{landmark_loss.cpu().data}")
                    torch.save(self.net.state_dict(), self.save_path)
                    print("Save successfully")


if __name__ == '__main__':
    save_path1 = r'./param/rnet.pt'
    dataset_path1 = r'T:\mtcnn\24'
    net = nets.RNet()
    t = Trainer(net, save_path1, dataset_path1, True)
    t.train()



训练时,我是用的对于置信度和特征点的损失函数是均方差损失函数,对偏移量的损失函数是二分类交叉熵损失函数。

侦测部分

侦测部分我只列出比较重要的部分
这是p网络侦测部分,包含图像金字塔,不了解的可以看我上一篇:

    def p_detect(self, img):
        scale = 1  # the scaling value
        w, h = img.size  # the size of img
        min_length = min(w, h)  # the min edge
        box_list = []   # to save box

        while min_length >= 12:
            img_data = self.transforms(img)  # to tensor
            if self.iscuda:
                img_data = img_data.cuda()
            img_data.unsqueeze_(0)  # Raise a dimension
            _offset, _landmark, _conf = self.pnet(img_data)  # predict
            _offset, _landmark, _conf = _offset[0].cpu().data, _landmark[0].cpu().data, _conf[0][0].cpu().data
            positive_index = torch.nonzero(_conf > 0.6)
			# 这部分是特征反算
            for idx in positive_index:
                # The location in the original image
                _x1 = (idx[1].float() * 2) / scale
                _y1 = (idx[0].float() * 2) / scale
                _x2 = (idx[1].float() * 2 + 12) / scale
                _y2 = (idx[0].float() * 2 + 12) / scale
                # The original image size
                _w, _h = _x2 - _x1, _y2 - _y1
                offset = _offset[:, idx[0], idx[1]]  # offset
                landmark = _landmark[:, idx[0], idx[1]]  # landmark
                # box in the original image
                x1 = offset[0] * _w + _x1
                y1 = offset[1] * _h + _y1
                x2 = offset[2] * _h + _x2
                y2 = offset[3] * _w + _y2
                # landmark in the image
                ex1, ey1, ex2, ey2 = landmark[0]*_w + x1, landmark[1]*_h + y1, landmark[2]*_w + x1, landmark[3]*_h + y1
                nx, ny = landmark[4]*_w + x1, landmark[5]*_h + y1
                mx1, my1, mx2, my2 = landmark[6]*_w + x1, landmark[7]*_h + y1, landmark[8]*_w + x1, landmark[9]*_h + y1

                box_list.append([_conf[idx[0], idx[1]], ex1, ey1, ex2, ey2, nx, ny, mx1, my1, mx2, my2, x1, y1, x2, y2])
            # 缩放
            scale *= 0.7
            min_length *= 0.7
            w, h = int(w*0.7), int(h*0.7)
            img = img.resize([w, h])

        return utils.nms(np.array(box_list), 0.5)

下面是nms:

def nms(boxes, thresh=0.3, ismin=False):
    """ :param boxes: 框 :param thresh: 阈值 :param ismin: 是否除以最小值 :return: nms抑制后的框 """
    if boxes.shape[0] == 0:  # 框为空时防止报错
        return np.array([])
    # 根据置信度从大到小排序(argsort默认从小到大,加负号从大到小)
    _boxes = boxes[(-boxes[:, 0]).argsort()]
    r_box = []  # 用于存放抑制后剩余的框
    while _boxes.shape[0] > 1:  # 当剩余框大与0个时
        r_box.append(_boxes[0])  # 添加第一个框
        abox = _boxes[0][11:]
        bbox = _boxes[1:][:, 11:]
        idxs = np.where(iou(abox, bbox, ismin) < thresh)  # iou小于thresh框的索引
        _boxes = _boxes[1:][idxs]  # 取出iou小于thresh的框
    if _boxes.shape[0] > 0:
        r_box.append(_boxes[0])  # 添加最后一个框
    return np.stack(r_box)

剩余的侦测可以仿照PNet的侦测完成,这部分就大家自己写了。

结果展示

下面给几张检测的结果:


以上测试图片来自网络。

那么,本文到此结束了,有问题可以联系我的邮箱:2487429219@qq.com
文章有错误的话欢迎大佬指正,不甚感激。
都看到这了,点个赞呗…QwQ…

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服