FPGA SDRAM接口设计(三)设计实现

   日期:2020-09-23     浏览:99    评论:0    
核心提示:一、设计要求本设计是在做ov7670摄像头采集数据流时,以SDRAM作为缓存使用,因此这里才使用SDRAM对其进行介绍和设计。在对ov7670摄像头数据存储时,SDRAM采用冲突读和冲突写模式,cas延时为3,冲突长度为8。能正常对不同地址、不同bank进行读写。二、设计思路程序主体框架采用状态机编写,主要有以下几个状态:空状态(NOP)、预充电状态(PRECHARGE)、刷新状态(REF)、加载模式寄存器状态(MODE)、空闲状态(IDLE)、激活状态(ACTIVE)、写状态(WRITE)

一、设计要求

本设计是在做ov7670摄像头采集数据流时,以SDRAM作为缓存使用,因此这里才使用SDRAM对其进行介绍和设计。

在对ov7670摄像头数据存储时,SDRAM采用冲突读和冲突写模式,cas延时为3,冲突长度为8。能正常对不同地址、不同bank进行读写。

二、设计思路

程序主体框架采用状态机编写,主要有以下几个状态:空状态(NOP)、预充电状态(PRECHARGE)、刷新状态(REF)、加载模式寄存器状态(MODE)、空闲状态(IDLE)、激活状态(ACTIVE)、写状态(WRITE)、读状态(READ)。

其状态转移图如图所示:

 状态机里的初始化操作包括空状态、预充电状态、刷新状态和加载模式寄存机状态,按照前面所讲的初始化过程进行初始化,初始化完成后进入空闲状态,在空间状态时可以进行读或写操作,进入激活状态,将对应的bank激活后才能进行读写,读写完成后进入预充电状态,然后再回到空闲状态。在空闲状态也会进入自刷新状态,每64ms要刷新4096次。这样,整个状态机框架就出来了。

三、设计实现

接口信号设置:

信号名称 位宽 方向 说明
clk 1 I 输入时钟信号100MHZ
rst_n 1 I 复位信号
wr_en 1 I 写使能信号
wr_data 16 I 写数据
rd_en 1 I 读使能信号
bank_addr 2 I bank地址
row_addr 12 I 行地址
col_addr 9 I 列地址
rd_data 16 O 读出的数据
rd_data_vld 1 O 读出数据有效位
wr_data_vld 1 O 写入数据有效位
wdata_done 1 O 写数据结束标志
rdata_done 1 O 读数据结束标志
sdram_clk 1 O SDRAM时钟信号
sdram_commond 4 O {cs,ras,cas,we}四个信号组合
sdram_cke 1 O 时钟使能信号
sdram_dqm 2 O 数据线屏蔽信号
sdram_addr 12 O SDRAM地址线
sdram_bank 2 O SDRAM bank选取
sdram_dq 16 IO SDRAM数据输出输入总线

代码如下:代码具体细节部分不做说明,按照自己需求进行编写。


// Company  : 
// Engineer : 
// -----------------------------------------------------------------------------
// https://blog.csdn.net/qq_33231534    PHF's CSDN blog
// -----------------------------------------------------------------------------
// Create Date    : 2020-09-18 14:20:22
// Revise Data    : 2020-09-20 15:30:16
// File Name      : SDRAM_control.v
// Target Devices : XC7Z015-CLG485-2
// Tool Versions  : Vivado 2019.2
// Revision       : V1.1
// Editor         : sublime text3, tab size (4)
// Description    : SDRAM控制器,支持读写冲突长度为8,cas为3

module SDRAM_control(
	input					clk				,//100MHZ
	input					rst_n			,//复位
	input					wr_en			,//写使能信号
	input	[15:0]			wr_data			,//写数据
	input					rd_en			,//读使能信号
	input	[1:0]			bank_addr		,//bank地址
	input	[11:0]			row_addr		,//行地址
	input	[8:0]			col_addr		,//列地址
	
	output	reg	[15:0]		rd_data			,//读出的数据
	output	reg				rd_data_vld		,//读出数据有效位
	output	wire			wr_data_vld		,//写入数据有效位
	output	wire			wdata_done		,//写数据结束标志
	output	wire			rdata_done		,//读数据结束标志

	output	wire			sdram_clk		,//SDRAM时钟信号
	output	reg	[3:0]		sdram_commond	,//{cs,ras,cas,we}
	output	wire			sdram_cke		,//时钟使能信号
	output	reg	[1:0]		sdram_dqm		,//数据线屏蔽信号
	output	reg	[11:0]		sdram_addr		,//SDRAM地址线
	output	reg	[1:0]		sdram_bank		,//SDRAM bank选取
	inout	wire[15:0]		sdram_dq		 //SDRAM数据输出输入总线
	);

	//延时
	localparam TWAIT_200us 	= 15'd20000		;//上电等待时间
	localparam TRP			= 2'd3			;//预充电周期
	localparam TRC 			= 4'd10			;//自刷新周期
	localparam TRSC			= 2'd3			;//加载模式寄存器周期
	localparam TRCD			= 2'd2			;//激活命令周期
	localparam TREAD_11		= 4'd11			;//burst=8,cas=3
	localparam TWRITE_8		= 4'd8			;//burst=8
	localparam AUTO_REF_TIME= 11'd1562		;

	//状态
	localparam NOP			= 3'd0			;
	localparam PRECHARGE	= 3'd1			;
	localparam REF			= 3'd2			;
	localparam MODE			= 3'd3			;
	localparam IDLE			= 3'd4			;
	localparam ACTIVE		= 3'd5			;
	localparam WRITE		= 3'd6			;
	localparam READ			= 3'd7			;

	//操作命令
	localparam NOP_CMD      = 4'b0111		;
    localparam PRECHARGE_CMD= 4'b0010		;
    localparam REF_CMD      = 4'b0001		;
    localparam MODE_CMD     = 4'b0000		;
    localparam ACTIVE_CMD   = 4'b0011		;
    localparam WRITE_CMD    = 4'b0100		;
    localparam READ_CMD     = 4'b0101		;

    //初始化阶段地址线
    localparam ALL_BANK		= 12'b01_0_00_000_0_000;//预充电地址线
    localparam MODE_CONFIG	= 12'b00_0_00_011_0_011;//配置模式寄存器时地址线

    wire nop_to_pre_start 		;
	wire pre_to_ref_start 		;
	wire pre_to_idle_start 		;
	wire ref_to_mode_start 		;
	wire ref_to_idle_start 		;
	wire ref_to_ref_start 		;
	wire mode_to_idle_start 	;
	wire idle_to_active_start 	;
	wire idle_to_ref_start 		;
	wire active_to_write_start	;
	wire active_to_read_start 	;
	wire write_to_pre_start 	;
	wire read_to_pre_start 		;

	reg	[2:0]	state_c;
	reg	[2:0]	state_n;
    wire 		sdram_dq_en;
	wire[15:0]	sdram_dq_r;
	reg			rd_data_vld_ff0;
	reg			rd_data_vld_ff1;
	reg			rd_data_vld_ff2;
	reg	[10:0]	auto_ref_cnt;
	wire		add_auto_ref_cnt;
	wire		end_auto_ref_cnt;
	reg 		ref_req;
	wire 		init_done;
	reg  		init_flag;
	reg	[14:0]	cnt0	;
	wire		add_cnt0;
	wire		end_cnt0;
	reg [14:0]	x;
	reg	[3:0]	ref_cnt1;
	wire		add_cnt1;
	wire		end_cnt1;
	reg			flag_rd;
	reg 		flag_wr;


    assign sdram_clk = ~clk;

	always @(posedge clk or negedge rst_n) begin
		if (!rst_n) begin
			state_c <= NOP;			
		end
		else begin
			state_c <= state_n;
		end
	end

	always @(*)begin
		case(state_c)
			NOP	:begin
				if (nop_to_pre_start) begin
					state_n = PRECHARGE;
				end
				else begin
					state_n = state_c;
				end
			end
			PRECHARGE:begin
				if (pre_to_ref_start) begin
					state_n = REF;
				end
				else if (pre_to_idle_start) begin
					state_n = IDLE;
				end
				else begin
					state_n = state_c;
				end
			end
			REF:begin
				if (ref_to_mode_start) begin
					state_n = MODE;
				end
				else if (ref_to_idle_start) begin
					state_n = IDLE;
				end
				else if (ref_to_ref_start) begin
					state_n = REF;
				end
				else begin
					state_n = state_c;
				end
			end
			MODE:begin
				if (mode_to_idle_start) begin
					state_n = IDLE;
				end
				else begin
					state_n =state_c;
				end
			end
			IDLE:begin
				if (idle_to_active_start) begin
					state_n = ACTIVE;
				end
				else if (idle_to_ref_start) begin
					state_n = REF;
				end
				else begin
					state_n = state_c;
				end
			end
			ACTIVE:begin
				if (active_to_write_start) begin
					state_n = WRITE;
				end
				else if (active_to_read_start) begin
					state_n = READ;
				end
				else begin
					state_n = state_c;
				end
			end
			WRITE:begin
				if(write_to_pre_start)begin
					state_n = PRECHARGE;
				end
				else begin
					state_n = state_c;
				end
			end
			READ:begin
				if (read_to_pre_start) begin
					state_n = PRECHARGE;
				end
				else begin
					state_n = state_c;
				end
			end
			default:state_n = IDLE;
		endcase
	end

	assign nop_to_pre_start 		= (state_c==NOP && end_cnt0);
	assign pre_to_ref_start 		= (state_c==PRECHARGE && end_cnt0 && init_flag==1);
	assign pre_to_idle_start 		= (state_c==PRECHARGE && end_cnt0 && init_flag==0);
	assign ref_to_mode_start 		= (state_c==REF && init_flag==1 && end_cnt1);
	assign ref_to_idle_start 		= (state_c==REF && init_flag==0 && end_cnt0);
	assign ref_to_ref_start 		= (state_c==REF && init_flag==1 && end_cnt0 && ref_cnt1<7);
	assign mode_to_idle_start 		= (state_c==MODE && init_flag==1 && end_cnt0);
	assign idle_to_active_start 	= (state_c==IDLE && (wr_en || rd_en) && ref_req==0);
	assign idle_to_ref_start 		= (state_c==IDLE && ref_req==1);
	assign active_to_write_start	= (state_c==ACTIVE && end_cnt0 && flag_wr);
	assign active_to_read_start 	= (state_c==ACTIVE && end_cnt0 && flag_rd);
	assign write_to_pre_start 		= (state_c==WRITE && end_cnt0);
	assign read_to_pre_start 		= (state_c==READ && end_cnt0);

	//命令控制字 sdram_commond = {CS,RAS,CAS,WE};
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			sdram_commond <= NOP_CMD;
		end
		else if (nop_to_pre_start || write_to_pre_start || read_to_pre_start) begin
			sdram_commond <= PRECHARGE_CMD;
		end
		else if (pre_to_ref_start || ref_to_ref_start || idle_to_ref_start) begin
			sdram_commond <= REF_CMD;
		end
		else if (ref_to_mode_start) begin
			sdram_commond <= MODE_CMD;
		end
		else if (idle_to_active_start) begin
			sdram_commond <= ACTIVE_CMD;
		end
		else if (active_to_write_start) begin
			sdram_commond <= WRITE_CMD;
		end
		else if (active_to_read_start) begin
			sdram_commond <= READ_CMD;
		end
		else begin
			sdram_commond <= NOP_CMD;
		end
	end

	//cke信号保持拉高
	assign sdram_cke = 1;
    
    //dqm信号
    always  @(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            sdram_dqm <= 2'b11;
        end
        else if(init_done)begin
            sdram_dqm <= 2'b00;
        end
    end

    //地址线
    always  @(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
            sdram_addr <= 12'b0;
        end
        else if(nop_to_pre_start || write_to_pre_start || read_to_pre_start)begin
            sdram_addr <= ALL_BANK;             
        end
        else if(ref_to_mode_start)begin
            sdram_addr <= MODE_CONFIG;               
        end
        else if(idle_to_active_start)begin
		    sdram_addr <= row_addr;  		       		                 
        end
        else if (active_to_read_start || active_to_write_start) begin
        	sdram_addr <= {3'b000,col_addr};
        end
        else begin
            sdram_addr <= 12'b0;               
        end
    end

    //sdram_bank
    always  @(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
        	sdram_bank <= 2'b00;
        end
        else if (idle_to_active_start || active_to_write_start || active_to_read_start) begin
        	sdram_bank <= bank_addr;
        end
        else begin
        	sdram_bank <= 2'b00;
        end
    end

    //sdram_dq
    assign sdram_dq_en = (state_c==WRITE) ? 1'b1 : 1'b0;

	assign sdram_dq = sdram_dq_en ? sdram_dq_r : 16'hzzzz;

	assign sdram_dq_r = wr_data;

	assign wr_data_vld = state_c==WRITE;


	assign wdata_done = write_to_pre_start;
	assign rdata_done = read_to_pre_start;
	
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			rd_data <= 16'd0;
		end
		else if (state_c==READ) begin
			rd_data <= sdram_dq;
		end
	end

	//读有效标志
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			rd_data_vld_ff0 <= 0;
		end
		else if (active_to_read_start) begin
			rd_data_vld_ff0 <= 1;
		end
		else if (state_c==READ && cnt0==TREAD_11-4) begin
			rd_data_vld_ff0 <= 0;
		end
	end
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			rd_data_vld_ff1 <= 0;
			rd_data_vld_ff2 <= 0;
			rd_data_vld     <= 0;
		end
		else begin
			rd_data_vld_ff1 <= rd_data_vld_ff0;
			rd_data_vld_ff2 <= rd_data_vld_ff1;
			rd_data_vld     <= rd_data_vld_ff2;
		end
	end

	//刷新请求计数
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			auto_ref_cnt <= 0;
		end
		else if (add_auto_ref_cnt) begin
			if (end_auto_ref_cnt) begin
				auto_ref_cnt <= 0;
			end
			else begin
				auto_ref_cnt <= auto_ref_cnt + 1'b1;
			end
		end
	end
	assign add_auto_ref_cnt = init_flag==0;
	assign end_auto_ref_cnt = (add_auto_ref_cnt && auto_ref_cnt==AUTO_REF_TIME-1);

	//ref_req 刷新请求
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			ref_req <= 0;
		end
		else if (end_auto_ref_cnt) begin
			ref_req <= 1;
		end
		else if (state_c==IDLE && ref_req==1) begin
			ref_req <= 0;
		end
	end

	//初始化标志
	assign init_done = (state_c==MODE && end_cnt0);

	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			init_flag <= 1;
		end
		else if (init_done) begin
			init_flag <= 0;
		end
	end

	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			cnt0 <= 0;
		end
		else if (add_cnt0) begin
			if (end_cnt0) begin
				cnt0 <= 0;
			end
			else begin
				cnt0 <= cnt0 + 1'b1;
			end
		end
	end
	assign add_cnt0 = state_c!=IDLE;
	assign end_cnt0 = add_cnt0 && cnt0==x-1'b1;
	

	always @(*)begin
		case(state_c)
			NOP			: x = TWAIT_200us;
			PRECHARGE	: x = TRP;
			REF			: x = TRC;
			MODE		: x = TRSC;
			ACTIVE		: x = TRCD;
			WRITE		: x = TWRITE_8;
			READ		: x = TREAD_11;
			default		: x = 0;
		endcase
	end

	//初始化自刷新8个周期计数
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			ref_cnt1 <= 0;
		end
		else if (add_cnt1) begin
			if (end_cnt1) begin
				ref_cnt1 <= 0;
			end
			else begin
				ref_cnt1 <= ref_cnt1 + 1'b1;
			end
		end
	end
	assign add_cnt1 = (state_c==REF && init_flag==1 && end_cnt0);
	assign end_cnt1 = (add_cnt1 && ref_cnt1== 8-1);

	//读写信号标志
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			flag_rd <= 0;
		end
		else if (state_c==IDLE && rd_en && ref_req==0) begin
			flag_rd <= 1;
		end
		else if (pre_to_idle_start && flag_rd==1) begin
			flag_rd <= 0;
		end
	end
	always @(posedge clk or negedge rst_n)begin
		if (!rst_n) begin
			flag_wr <= 0;
		end
		else if (state_c==IDLE && wr_en && rd_en==0 && ref_req==0) begin  //读优先级高于写优先级
			flag_wr <= 1;
		end
		else if (pre_to_idle_start && flag_wr==1) begin
			flag_wr <= 0;
		end
	end

endmodule

四、仿真测试

这里使用SDRAM的仿真模型是开源骚客的资料里的,小梅哥用的镁光的SDRAM仿真模型我没有找到。

仿真模型代码如下供有需要的人使用:


//2004-03-04	陈乃奎	修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16	陈乃奎	修改SDRAM 的初始化数据
//2004/04/06	陈乃奎	将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19	陈乃奎	修改参数 parameter tAC  =   8;
//2010/09/17	罗瑶	修改sdram的大小,数据位宽,dqm宽度;


`timescale 1ns / 1ps

module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);

    parameter addr_bits =	11;
    parameter data_bits = 	32;
    parameter col_bits  =	8;
    parameter mem_sizes =	1048576*2-1;//1 Meg 

    inout     [data_bits - 1 : 0] Dq;
    input     [addr_bits - 1 : 0] Addr;
    input                 [1 : 0] Ba;
    input                         Clk;
    input                         Cke;
    input                         Cs_n;
    input                         Ras_n;
    input                         Cas_n;
    input                         We_n;
    input                 [3 : 0] Dqm;          //高低各8bit
    //added by xzli
    input			  Debug;

    reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
    reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];

    reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipeline
    reg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipeline
    reg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipeline
    reg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipeline
    reg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;

    reg       [addr_bits - 1 : 0] Mode_reg;
    reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;
    reg       [col_bits - 1 : 0] Col_temp, Burst_counter;

    reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activate
    reg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Precharge

    reg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Command
    reg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)
    reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)
    reg                           Read_precharge     [0 : 3];       // R  AutoPrecharge
    reg                           Write_precharge    [0 : 3];       //  W AutoPrecharge
    integer                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)
    reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Precharge
    reg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Precharge

    reg                           Data_in_enable;
    reg                           Data_out_enable;

    reg                   [1 : 0] Bank, Previous_bank;
    reg       [addr_bits - 1 : 0] Row;
    reg        [col_bits - 1 : 0] Col, Col_brst;

    // Internal system clock
    reg                           CkeZ, Sys_clk;

    reg	[21:0]	dd;
    
    // Commands Decode
    wire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;
    wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;
    wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;
    wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
    wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;
    wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;
    wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;

    // Burst Length Decode
    wire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];
    wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];

    // CAS Latency Decode
    wire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];
    wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];

    // Write Burst Mode
    wire      Write_burst_mode = Mode_reg[9];

    wire      Debug;		// Debug messages : 1 = On; 0 = Off
    wire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQ

    reg		[31:0]	mem_d;
    
    event	sdram_r,sdram_w,compare;
    
    
   
   
    assign    Dq               = Dq_reg;                        // DQ buffer

    // Commands Operation
    `define   ACT       0
    `define   NOP       1
    `define   READ      2
    `define   READ_A    3
    `define   WRITE     4
    `define   WRITE_A   5
    `define   PRECH     6
    `define   A_REF     7
    `define   BST       8
    `define   LMR       9

//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    parameter tAC  =   8;	//test 6.5
//    parameter tHZ  =   7.0;
//    parameter tOH  =   2.7;
//    parameter tMRD =   2.0;     // 2 Clk Cycles
//    parameter tRAS =  44.0;
//    parameter tRC  =  66.0;
//    parameter tRCD =  20.0;
//    parameter tRP  =  20.0;
//    parameter tRRD =  15.0;
//    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
//    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)

    // Timing Parameters for -7 (PC143) and CAS Latency = 3
    parameter tAC  =   6.5;	//test 6.5
    parameter tHZ  =   5.5;
    parameter tOH  =   2;
    parameter tMRD =   2.0;     // 2 Clk Cycles
    parameter tRAS =  48.0;
    parameter tRC  =  70.0;
    parameter tRCD =  20.0;
    parameter tRP  =  20.0;
    parameter tRRD =  14.0;
    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)
    
    // Timing Check variable
    integer   MRD_chk;
    integer   WR_counter [0 : 3];
    time      WR_chk [0 : 3];
    time      RC_chk, RRD_chk;
    time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
    time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
    time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;

    integer	test_file;
    
    /        	
  	initial_sdram(0);
  	end
 
        task	initial_sdram; 
 
 		input		data_sign;
 		reg	[3:0]	data_sign;
 	     
       		for(dd=0;dd<=mem_sizes;dd=dd+1)
        	begin
        		mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
        		if(data_bits==16)
        			begin
        				Bank0[dd]=mem_d[15:0];
        				Bank1[dd]=mem_d[15:0];
        				Bank2[dd]=mem_d[15:0];
        				Bank3[dd]=mem_d[15:0];
        			end
        		else if(data_bits==32)
        			begin
        				Bank0[dd]=mem_d[31:0];
        				Bank1[dd]=mem_d[31:0];
        				Bank2[dd]=mem_d[31:0];
        				Bank3[dd]=mem_d[31:0];
        			end
        	end	
      	
       		endtask

    // System clock generator
    always
    	begin
       		@(posedge Clk)
       			begin
            			Sys_clk = CkeZ;
            			CkeZ = Cke;
        		end
        	@(negedge Clk) 
        		begin
            			Sys_clk = 1'b0;
        		end
    	end

    always @ (posedge Sys_clk) begin
        // Internal Commamd Pipelined
        Command[0] = Command[1];
        Command[1] = Command[2];
        Command[2] = Command[3];
        Command[3] = `NOP;

        Col_addr[0] = Col_addr[1];
        Col_addr[1] = Col_addr[2];
        Col_addr[2] = Col_addr[3];
        Col_addr[3] = {col_bits{1'b0}};

        Bank_addr[0] = Bank_addr[1];
        Bank_addr[1] = Bank_addr[2];
        Bank_addr[2] = Bank_addr[3];
        Bank_addr[3] = 2'b0;

        Bank_precharge[0] = Bank_precharge[1];
        Bank_precharge[1] = Bank_precharge[2];
        Bank_precharge[2] = Bank_precharge[3];
        Bank_precharge[3] = 2'b0;

        A10_precharge[0] = A10_precharge[1];
        A10_precharge[1] = A10_precharge[2];
        A10_precharge[2] = A10_precharge[3];
        A10_precharge[3] = 1'b0;

        // Dqm pipeline for Read
        Dqm_reg0 = Dqm_reg1;
        Dqm_reg1 = Dqm;

        // Read or Write with Auto Precharge Counter
        if (Auto_precharge[0] == 1'b1) begin
            Count_precharge[0] = Count_precharge[0] + 1;
        end
        if (Auto_precharge[1] == 1'b1) begin
            Count_precharge[1] = Count_precharge[1] + 1;
        end
        if (Auto_precharge[2] == 1'b1) begin
            Count_precharge[2] = Count_precharge[2] + 1;
        end
        if (Auto_precharge[3] == 1'b1) begin
            Count_precharge[3] = Count_precharge[3] + 1;
        end

        // tMRD Counter
        MRD_chk = MRD_chk + 1;

        // tWR Counter for Write
        WR_counter[0] = WR_counter[0] + 1;
        WR_counter[1] = WR_counter[1] + 1;
        WR_counter[2] = WR_counter[2] + 1;
        WR_counter[3] = WR_counter[3] + 1;

        // Auto Refresh
        if (Aref_enable == 1'b1) begin
            if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
            // Auto Refresh to Auto Refresh
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
            end
            // Precharge to Auto Refresh
            if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
                $display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
            end
            // Precharge to Refresh
            if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
            end
            // Record Current tRC time
            RC_chk = $time;
        end
        
        // Load Mode Register
        if (Mode_reg_enable == 1'b1) begin
            // Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
            if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
                Mode_reg = Addr;
                if (Debug) begin
                    $display ("at time %t LMR  : Load Mode Register", $time);
                    // CAS Latency
                    if (Addr[6 : 4] == 3'b010)
                        $display ("                            CAS Latency      = 2");
                    else if (Addr[6 : 4] == 3'b011)
                        $display ("                            CAS Latency      = 3");
                    else
                        $display ("                            CAS Latency      = Reserved");
                    // Burst Length
                    if (Addr[2 : 0] == 3'b000)
                        $display ("                            Burst Length     = 1");
                    else if (Addr[2 : 0] == 3'b001)
                        $display ("                            Burst Length     = 2");
                    else if (Addr[2 : 0] == 3'b010)
                        $display ("                            Burst Length     = 4");
                    else if (Addr[2 : 0] == 3'b011)
                        $display ("                            Burst Length     = 8");
                    else if (Addr[3 : 0] == 4'b0111)
                        $display ("                            Burst Length     = Full");
                    else
                        $display ("                            Burst Length     = Reserved");
                    // Burst Type
                    if (Addr[3] == 1'b0)
                        $display ("                            Burst Type       = Sequential");
                    else if (Addr[3] == 1'b1)
                        $display ("                            Burst Type       = Interleaved");
                    else
                        $display ("                            Burst Type       = Reserved");
                    // Write Burst Mode
                    if (Addr[9] == 1'b0)
                        $display ("                            Write Burst Mode = Programmed Burst Length");
                    else if (Addr[9] == 1'b1)
                        $display ("                            Write Burst Mode = Single Location Access");
                    else
                        $display ("                            Write Burst Mode = Reserved");
                end
            end else begin
                $display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
            end
            // REF to LMR
            if ($time - RC_chk < tRC) begin
                $display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
            end
            // LMR to LMR
            if (MRD_chk < tMRD) begin
                $display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
            end
            MRD_chk = 0;
        end
        
        // Active Block (Latch Bank Address and Row Address)
        if (Active_enable == 1'b1) begin
            if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
                {Act_b0, Pc_b0} = 2'b10;
                B0_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk0 = $time;
                RAS_chk0 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);
                // Precharge to Activate Bank 0
                if ($time - RP_chk0 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
                end
            end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
                {Act_b1, Pc_b1} = 2'b10;
                B1_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk1 = $time;
                RAS_chk1 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);
                // Precharge to Activate Bank 1
                if ($time - RP_chk1 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
                end
            end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
                {Act_b2, Pc_b2} = 2'b10;
                B2_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk2 = $time;
                RAS_chk2 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);
                // Precharge to Activate Bank 2
                if ($time - RP_chk2 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
                end
            end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
                {Act_b3, Pc_b3} = 2'b10;
                B3_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk3 = $time;
                RAS_chk3 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);
                // Precharge to Activate Bank 3
                if ($time - RP_chk3 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
                end
            end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
                $display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
            end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
                $display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
            end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
                $display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
            end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
            end
            // Active Bank A to Active Bank B
            if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
                $display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
            end
            // Load Mode Register to Active
            if (MRD_chk < tMRD ) begin
                $display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
            end
            // Auto Refresh to Activate
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
            end
            // Record variables for checking violation
            RRD_chk = $time;
            Previous_bank = Ba;
        end
        
        // Precharge Block
        if (Prech_enable == 1'b1) begin
            if (Addr[10] == 1'b1) begin
                {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
                {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
                RP_chk0 = $time;
                RP_chk1 = $time;
                RP_chk2 = $time;
                RP_chk3 = $time;
                if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);
                // Activate to Precharge all banks
                if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
                    ($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
                    $display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
                end
                // tWR violation check for write
                if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
                    ($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
                    $display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
                end
            end else if (Addr[10] == 1'b0) begin
                if (Ba == 2'b00) begin
                    {Pc_b0, Act_b0} = 2'b10;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 0",$time);
                    // Activate to Precharge Bank 0
                    if ($time - RAS_chk0 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
                    end
                end else if (Ba == 2'b01) begin
                    {Pc_b1, Act_b1} = 2'b10;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 1",$time);
                    // Activate to Precharge Bank 1
                    if ($time - RAS_chk1 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
                    end
                end else if (Ba == 2'b10) begin
                    {Pc_b2, Act_b2} = 2'b10;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 2",$time);
                    // Activate to Precharge Bank 2
                    if ($time - RAS_chk2 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
                    end
                end else if (Ba == 2'b11) begin
                    {Pc_b3, Act_b3} = 2'b10;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 3",$time);
                    // Activate to Precharge Bank 3
                    if ($time - RAS_chk3 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
                    end
                end
                // tWR violation check for write
                if ($time - WR_chk[Ba] < tWRp) begin
                    $display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
                end
            end
            // Terminate a Write Immediately (if same bank or all banks)
            if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
                Data_in_enable = 1'b0;
            end
            // Precharge Command Pipeline for Read
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `PRECH;
                Bank_precharge[2] = Ba;
                A10_precharge[2] = Addr[10];
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `PRECH;
                Bank_precharge[1] = Ba;
                A10_precharge[1] = Addr[10];
            end
        end
        
        // Burst terminate
        if (Burst_term == 1'b1) begin
            // Terminate a Write Immediately
            if (Data_in_enable == 1'b1) begin
                Data_in_enable = 1'b0;
            end
            // Terminate a Read Depend on CAS Latency
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `BST;
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `BST;
            end
            if (Debug) $display ("at time %t BST  : Burst Terminate",$time);
        end
        
        // Read, Write, Column Latch
        if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
            // Check to see if bank is open (ACT)
            if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
                (Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
                $display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
            end
            // Activate to Read or Write
            if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
            if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
            if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
            if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
            // Read Command
            if (Read_enable == 1'b1) begin
                // CAS Latency pipeline
                if (Cas_latency_3 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[2] = `READ_A;
                    end else begin
                        Command[2] = `READ;
                    end
                    Col_addr[2] = Addr;
                    Bank_addr[2] = Ba;
                end else if (Cas_latency_2 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[1] = `READ_A;
                    end else begin
                        Command[1] = `READ;
                    end
                    Col_addr[1] = Addr;
                    Bank_addr[1] = Ba;
                end

                // Read interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

            // Write Command
            end else if (Write_enable == 1'b1) begin
                if (Addr[10] == 1'b1) begin
                    Command[0] = `WRITE_A;
                end else begin
                    Command[0] = `WRITE;
                end
                Col_addr[0] = Addr;
                Bank_addr[0] = Ba;

                // Write interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

                // Write interrupt Read (terminate Read immediately)
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end

            // Interrupting a Write with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
                RW_interrupt_write[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Interrupting a Read with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
                RW_interrupt_read[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Read or Write with Auto Precharge
            if (Addr[10] == 1'b1) begin
                Auto_precharge[Ba] = 1'b1;
                Count_precharge[Ba] = 0;
                if (Read_enable == 1'b1) begin
                    Read_precharge[Ba] = 1'b1;
                end else if (Write_enable == 1'b1) begin
                    Write_precharge[Ba] = 1'b1;
                end
            end
        end

        //  Read with Auto Precharge Calculation
        //      The device start internal precharge:
        //          1.  CAS Latency - 1 cycles before last burst
        //      and 2.  Meet minimum tRAS requirement
        //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
        if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2
                ((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
                 (RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    Auto_precharge[0] = 1'b0;
                    Read_precharge[0] = 1'b0;
                    RW_interrupt_read[0] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
        if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
                 (RW_interrupt_read[1] == 1'b1)) begin
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    Auto_precharge[1] = 1'b0;
                    Read_precharge[1] = 1'b0;
                    RW_interrupt_read[1] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
        if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
                 (RW_interrupt_read[2] == 1'b1)) begin
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    Auto_precharge[2] = 1'b0;
                    Read_precharge[2] = 1'b0;
                    RW_interrupt_read[2] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
        if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
                 (RW_interrupt_read[3] == 1'b1)) begin
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    Auto_precharge[3] = 1'b0;
                    Read_precharge[3] = 1'b0;
                    RW_interrupt_read[3] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end

        // Internal Precharge or Bst
        if (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banks
            if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end
        end else if (Command[0] == `BST) begin                  // BST terminate a read to current bank
            if (Data_out_enable == 1'b1) begin
                Data_out_enable = 1'b0;
            end
        end

        if (Data_out_enable == 1'b0) begin
            Dq_reg <= #tOH {data_bits{1'bz}};
        end

        // Detect Read or Write command
        if (Command[0] == `READ || Command[0] == `READ_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b0;
            Data_out_enable = 1'b1;
        end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b1;
            Data_out_enable = 1'b0;
        end

        // DQ buffer (Driver/Receiver)
        if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            // Dqm operation
            if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
            if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
            //if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
           // if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
            // Write to memory
            if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
            	$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            //$fdisplay(test_file,"bank:%h	row:%h	col:%h	write:%h",Bank,Row,Col,Dq_dqm);
            // Output result
            if (Dqm == 4'b1111) begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
                // Record tWR time and reset counter
                WR_chk [Bank] = $time;
                WR_counter [Bank] = 0;
            end
            // Advance burst counter subroutine
            #tHZ Burst;
        end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory
        	//$display("%h	,	%h,	%h",Bank0,Row,Col);
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            	
            // Dqm operation
            if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
            if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
            if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
            if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
            // Display result
            Dq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];
            if (Dqm_reg0 == 4'b1111) begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
            end
            // Advance burst counter subroutine
            Burst;
        end
    end

    //  Write with Auto Precharge Calculation
    //      The device start internal precharge:
    //          1.  tWR Clock after last burst
    //      and 2.  Meet minimum tRAS requirement
    //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
    always @ (WR_counter[0]) begin
        if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
                 (RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)
                    Auto_precharge[0] = 1'b0;
                    Write_precharge[0] = 1'b0;
                    RW_interrupt_write[0] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
    end
    always @ (WR_counter[1]) begin
        if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
                 (RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
                    Auto_precharge[1] = 1'b0;
                    Write_precharge[1] = 1'b0;
                    RW_interrupt_write[1] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
    end
    always @ (WR_counter[2]) begin
        if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
                 (RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
                    Auto_precharge[2] = 1'b0;
                    Write_precharge[2] = 1'b0;
                    RW_interrupt_write[2] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
    end
    always @ (WR_counter[3]) begin
        if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
                 (RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
                    Auto_precharge[3] = 1'b0;
                    Write_precharge[3] = 1'b0;
                    RW_interrupt_write[3] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end
    end

    task Burst;
        begin
            // Advance Burst Counter
            Burst_counter = Burst_counter + 1;

            // Burst Type
            if (Mode_reg[3] == 1'b0) begin                                  // Sequential Burst
                Col_temp = Col + 1;
            end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved Burst
                Col_temp[2] =  Burst_counter[2] ^  Col_brst[2];
                Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];
                Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];
            end

            // Burst Length
            if (Burst_length_2) begin                                       // Burst Length = 2
                Col [0] = Col_temp [0];
            end else if (Burst_length_4) begin                              // Burst Length = 4
                Col [1 : 0] = Col_temp [1 : 0];
            end else if (Burst_length_8) begin                              // Burst Length = 8
                Col [2 : 0] = Col_temp [2 : 0];
            end else begin                                                  // Burst Length = FULL
                Col = Col_temp;
            end

            // Burst Read Single Write            
            if (Write_burst_mode == 1'b1) begin
                Data_in_enable = 1'b0;
            end

            // Data Counter
            if (Burst_length_1 == 1'b1) begin
                if (Burst_counter >= 1) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_2 == 1'b1) begin
                if (Burst_counter >= 2) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_4 == 1'b1) begin
                if (Burst_counter >= 4) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_8 == 1'b1) begin
                if (Burst_counter >= 8) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end
        end
    endtask
    
    //


    integer	sdram_data,sdram_mem;
    reg	[23:0]	aa,cc;
    reg	[18:0]	bb,ee;
    
    always@(sdram_r)
	begin
		   $display("Sdram dampout begin ",$realtime);
		   sdram_data=$fopen("sdram_data.txt");
		   for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
		   	begin
		   	bb=aa[18:0];
			if(aa<=mem_sizes)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank0[bb]);
			else if(aa<=2*mem_sizes+1)
		            	$fdisplay(sdram_data,"%0d	%0h",aa,Bank1[bb]);
			else if(aa<=3*mem_sizes+2)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank2[bb]);
			else
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank3[bb]);
		  	end	    	    	    
		  $fclose("sdram_data.txt"); 
		  
		  sdram_mem=$fopen("sdram_mem.txt");
		  for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
		  	begin
		   	ee=cc[18:0];
			if(cc<=mem_sizes)
				$fdisplay(sdram_mem,"%0h",Bank0[ee]);
			else if(cc<=2*mem_sizes+1)
		            	$fdisplay(sdram_mem,"%0h",Bank1[ee]);
			else if(cc<=3*mem_sizes+2)
				$fdisplay(sdram_mem,"%0h",Bank2[ee]);
			else
				$fdisplay(sdram_mem,"%0h",Bank3[ee]);
		  	end	    	    	    
		  $fclose("sdram_mem.txt");        
	 
	  end        



// //    // Timing Parameters for -75 (PC133) and CAS Latency = 2
// //    specify
// //        specparam
//                     tAH  =  0.8,                                        // Addr, Ba Hold Time
//                     tAS  =  1.5,                                        // Addr, Ba Setup Time
//                     tCH  =  2.5,                                        // Clock High-Level Width
//                     tCL  =  2.5,                                        // Clock Low-Level Width
// //                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
// //                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
//                     tCK  =  7,                				// Clock Cycle Time  143mhz
//                     tDH  =  0.8,                                        // Data-in Hold Time
//                     tDS  =  1.5,                                        // Data-in Setup Time
//                     tCKH =  0.8,                                        // CKE Hold  Time
//                     tCKS =  1.5,                                        // CKE Setup Time
//                     tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
//                     tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// //                    tAH  =  1,                                        // Addr, Ba Hold Time
// //                    tAS  =  1.5,                                        // Addr, Ba Setup Time
// //                    tCH  =  1,                                        // Clock High-Level Width
// //                    tCL  =  3,                                        // Clock Low-Level Width
//                     tCK  = 10.0,                                       // Clock Cycle Time  100mhz
//                     tCK  = 7.5,    					// Clock Cycle Time  133mhz
// //                    tCK  =  7,                				// Clock Cycle Time  143mhz
// //                    tDH  =  1,                                        // Data-in Hold Time
// //                    tDS  =  2,                                        // Data-in Setup Time
// //                    tCKH =  1,                                        // CKE Hold  Time
// //                    tCKS =  2,                                        // CKE Setup Time
// //                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
// //                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// //        $width    (posedge Clk,           tCH);
// //        $width    (negedge Clk,           tCL);
// //        $period   (negedge Clk,           tCK);
// //        $period   (posedge Clk,           tCK);
// //        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
// //        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
// //        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
// //        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
// //        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
// //        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
// //        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
// //        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
// //        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
// //    endspecify

endmodule

测试代码如下:


`timescale 1ns/1ns

module SDRAM_control_tb (); 

	reg rst_n;
	reg clk;

	parameter clk_period = 10;

	localparam TWAIT_200us   = 15'd20000;
	localparam TRP           = 2'd3;
	localparam TRC           = 4'd10;
	localparam TRSC          = 2'd3;
	localparam TRCD          = 2'd2;
	localparam TREAD_10      = 4'd10;
	localparam TWRITE_7      = 3'd7;
	localparam AUTO_REF_TIME = 11'd1562;
	localparam NOP           = 3'd0;
	localparam PRECHARGE     = 3'd1;
	localparam REF           = 3'd2;
	localparam MODE          = 3'd3;
	localparam IDLE          = 3'd4;
	localparam ACTIVE        = 3'd5;
	localparam WRITE         = 3'd6;
	localparam READ          = 3'd7;
	localparam NOP_CMD       = 4'b0111;
	localparam PRECHARGE_CMD = 4'b0010;
	localparam REF_CMD       = 4'b0001;
	localparam MODE_CMD      = 4'b0000;
	localparam ACTIVE_CMD    = 4'b0011;
	localparam WRITE_CMD     = 4'b0100;
	localparam READ_CMD      = 4'b0101;
	localparam ALL_BANK      = 12'b01_0_00_000_0_000;
	localparam MODE_CONFIG   = 12'b00_0_00_011_0_011;

	reg         wr_en;
	reg  [15:0] wr_data;
	reg         rd_en;
	reg   [1:0] bank_addr;
	reg  [11:0] row_addr;
	reg   [8:0] col_addr;
	wire [15:0] rd_data;
	wire        rd_data_vld;
	wire        wr_data_vld;
	wire        wdata_done;
	wire        rdata_done;
	wire        sdram_clk;
	wire  [3:0] sdram_commond;
	wire        sdram_cke;
	wire  [1:0] sdram_dqm;
	wire [11:0] sdram_addr;
	wire  [1:0] sdram_bank;
	wire [15:0] sdram_dq;

	//reg sdram_dq_en;
	//reg	sdram_dq_r;
	//assign sdram_dq = sdram_dq_en ? sdram_dq_r : 16'hzzzz;

	SDRAM_control inst_SDRAM_control
		(
			.clk           (clk),
			.rst_n         (rst_n),
			.wr_en         (wr_en),
			.wr_data       (wr_data),
			.rd_en         (rd_en),
			.bank_addr     (bank_addr),
			.row_addr      (row_addr),
			.col_addr      (col_addr),
			.rd_data       (rd_data),
			.rd_data_vld   (rd_data_vld),
			.wr_data_vld   (wr_data_vld),
			.wdata_done    (wdata_done),
			.rdata_done    (rdata_done),
			.sdram_clk     (sdram_clk),
			.sdram_commond (sdram_commond),
			.sdram_cke     (sdram_cke),
			.sdram_dqm     (sdram_dqm),
			.sdram_addr    (sdram_addr),
			.sdram_bank    (sdram_bank),
			.sdram_dq      (sdram_dq)
		);

	sdram_model_plus #(
		.addr_bits(12),
		.data_bits(16),
		.col_bits(9),
		.mem_sizes(2*1024*1024)
	) inst_sdram_model_plus (
		.Dq    (sdram_dq),
		.Addr  (sdram_addr),
		.Ba    (sdram_bank),
		.Clk   (sdram_clk),
		.Cke   (sdram_cke),
		.Cs_n  (sdram_commond[3]),
		.Ras_n (sdram_commond[2]),
		.Cas_n (sdram_commond[1]),
		.We_n  (sdram_commond[0]),
		.Dqm   (sdram_dqm),
		.Debug (1'b1)
	);


	initial clk = 1;
	always #(clk_period/2) clk = ~clk;

	initial begin
		#1;
		rst_n = 0;
		wr_en = 0;
		wr_data = 16'd0;
		rd_en = 0;
		bank_addr = 2'b00;
		row_addr = 12'd0;
		col_addr = 9'd0;
		//sdram_dq_en = 0;
		#(clk_period*20);
		rst_n = 1;
		#(clk_period*20);

		#(20100*clk_period);

		wr_en = 1;
		row_addr = 12'd100;
		col_addr = 9'd8;
		#clk_period;
		wr_en = 0;
		row_addr = 12'd0;

		#(clk_period*50);

		rd_en = 1;
		row_addr = 12'd100;
		col_addr = 9'd8;
		#clk_period;
		rd_en = 0;
		#(clk_period*50);

		//测试读写优先级,应该是读优先级高于写优先级
		wr_en = 1;
		rd_en = 1;
		row_addr = 12'd200;
		col_addr = 9'd16;
		#clk_period;
		wr_en = 0;
		rd_en = 0;
		#(clk_period*50);

		$stop;
	end

	always @(posedge clk or negedge rst_n) begin
		if (!rst_n) begin
			wr_data <= 0;	
		end
		else if (wr_data_vld) begin
			wr_data <= wr_data + 2'd2;
		end
	end

endmodule

仿真结果:

首先仿真的是初始化:

可以看到其加载模式寄存器就是自己配置的模式。下边进行读和写操作测试。

可以看到其读写测试和预想结果一样。

五、总结

SDRAM控制器设计的时候还是比较复杂的,根据自己的需求选择什么样的模式,选择什么样的控制。将数据手册多看几遍,理清楚其中的关系和过程就会比较简单啦。

还有接下来工作就是对ov7670视频数据流能通过VGA接口显示在显示器上,VGA设计页写了,到时候总结的时候这些综合起来就可以啦。

 

 

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服