堆溢出 对DWORD SHOOT的原理进行简单了解

   日期:2020-09-20     浏览:174    评论:0    
核心提示:代码#include <windows.h>main(){ HLOCAL h1, h2,h3,h4,h5,h6; HANDLE hp; hp = HeapCreate(0,0x1000,0x10000); h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8); h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8); h3 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8); h4 = HeapAlloc(hp,

代码

#include <windows.h>
main()
{  
	HLOCAL h1, h2,h3,h4,h5,h6;
	HANDLE hp;
	hp = HeapCreate(0,0x1000,0x10000);
	h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	h3 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	h4 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	h5 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	h6 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	_asm int 3//break the process

	HeapFree(hp,0,h1);
	HeapFree(hp,0,h3);
	HeapFree(hp,0,h5); 
	_asm int 3
	
	h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,8);
	return 0;
} 

实验目的

简单理解DWORD SHOOT

实验准备

环境:windows xp
编译器:vc++
调试器:OD

实验过程

1.根据之前动调空表的经验直接找到申请的堆块的位置,六块申请了8个字节的空间,算上堆头8个字节,就相当于六块16个字节的内存,直接从尾块上面“切”下来。

2.释放奇数位的堆块,防止堆块合并
发现h1,h3,h5都链入了Freelist[2]


此时堆块的占用状况

NAME Flag 向前指针 向后指针
h1 1 占用态 0x003a06a8 (h3) 0x003a0188(Freelist[2])
h2 0 空闲态 NULL NULL
h3 1 占用态 0x003a06c8 (h5) 0x003a0688(h1)
h4 0 空闲态 NULL NULL
h5 1 占用态 0x003a0188(Freelist[2]) 0x003a06a8 (h3)
h6 0 空闲态 NULL NULL

如果这时候对某一串数据的向前指针或是向后指针进行修改,那么就能使自己的shellcode成功的载入进程序里面.
例如将h3中的后向指针改为0x12345678前向指针改成0x11111111,那么最后执行链表拆卸的时候就是把0x12345678指向的东西移到前向指针的位置上。如果把这些地址换成shellcode的地址就成功装入程序了。
实际上堆块的分配、释放、合并操作都能引发 DWORD SHOOT,因为都涉及到了链表,只要修改指针就能导入恶意代码。

摘抄《0day安全》

这本书简单的介绍了一下溢出的攻击方式,感觉介绍的也比较全面,所以直接摘抄一手。
(1)内存变量:修改能够影响程序执行的重要标志变量,往往可以改变程序流程。例如,更改身份验证函数的返回值就可以直接通过认证机制。栈溢出时溢出的数据必须连续,而 DWORD SHOOT 可以更改内存中任意地址的数据。
(2)代码逻辑:修改代码段重要函数的关键逻辑有时可以达到一定攻击效果,例如,程序分支处的判断逻辑,或者把身份验证函数的调用指令覆盖为 0x90(nop)。
(3)函数返回地址:栈溢出通过修改函数返回地址能够劫持进程,堆溢出也一样可以利用DWORD SHOOT 更改函数返回地址。但由于栈帧移位的原因,函数返回地址往往是不固定的,甚至在同一操作系统和补丁版本下连续运行两次栈状态都会有不同,故 DWORD SHOOT 在这种情况下有一定局限性,因为移动的靶子不好瞄准。
(4)攻击异常处理机制:当程序产生异常时,Windows 会转入异常处理机制。堆溢出很容易引起异常,因此异常处理机制所使用的重要数据结构往往会成为 DWORD SHOOT 的上等目标,这包括 S.E.H、F.V.E.H、进程环境块中的 U.E.F 、线程环境块中存放的第一个S.E.H 指针。
(5)函数指针:系统有时会使用一些函数指针,比如调用动态链接库中的函数、C++中的虚函数调用等。改写这些函数指针后,在函数调用发生后往往可以成功地劫持进程。但可惜的是,不是每一个漏洞都可以使用这项技术,这取决于软件的开发方式。
(6)P.E.B 中线程同步函数的入口地址:天才的黑客们发现在每个进程的 P.E.B 中都存放着一对同步函数指针,指向 RtlEnterCriticalSection()和 RtlLeaveCriticalSection(),并且在进程退出时会被 ExitProcess()调用。如果能够通过 DWORD SHOOT 修改这对指针中的其中一个,那么在程序退出时 ExitProcess()将会被骗去调用我们的 shellcode。由于 P.E.B 的位置始终不会变化,这对指针在 P.E.B 中的偏移也始终不变,这使得利用堆溢出开发适用于不同操作系统版本和补丁版本的 exploit 成为可能。这种方法一经提出就立刻成为了 Windows 平台下堆溢出利用的最经典方法之一,因为静止的靶子比活动的靶子好打得多,我们只需要把枪架好,闭着眼睛扣扳机就是了。

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服