ML之Classification:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测案例来理解和认知机器学习分类预测的模板流程

   日期:2020-09-02     浏览:236    评论:0    
核心提示:ML之Classification:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测案例来理解和认知机器学习分类预测的模板流程六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测数据集理解1、kNN2、逻辑回归3、SVM4、决策树5、随机森林...

ML之Classification:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测案例来理解和认知机器学习分类预测的模板流程
 

 

 

目录

六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测

数据集理解

1、kNN

2、逻辑回归

3、SVM

4、决策树

5、随机森林

6、提升树

7、神经网络

 

 

相关文章
ML之Classification:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测案例来理解和认知机器学习分类预测的模板流程
ML之Classification:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测案例来理解和认知机器学习分类预测全部

六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类预测

数据集理解

data.shape:  (768, 9)
data.columns: 
 Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
data.head: 
    Pregnancies  Glucose  BloodPressure  ...  DiabetesPedigreeFunction  Age  Outcome
0            6      148             72  ...                     0.627   50        1
1            1       85             66  ...                     0.351   31        0
2            8      183             64  ...                     0.672   32        1
3            1       89             66  ...                     0.167   21        0
4            0      137             40  ...                     2.288   33        1

[5 rows x 9 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   Pregnancies               768 non-null    int64  
 1   Glucose                   768 non-null    int64  
 2   BloodPressure             768 non-null    int64  
 3   SkinThickness             768 non-null    int64  
 4   Insulin                   768 non-null    int64  
 5   BMI                       768 non-null    float64
 6   DiabetesPedigreeFunction  768 non-null    float64
 7   Age                       768 non-null    int64  
 8   Outcome                   768 non-null    int64  
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
data.info: 
 None
8
data_column_X:  ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] 
 ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']

 

1、kNN

kNNC(n_neighbors=9):Training set accuracy: 0.792
kNNC(n_neighbors=9):Test set accuracy: 0.776

 

 

2、逻辑回归

LoR(c_regular=1):Training set accuracy: 0.785
LoR(c_regular=1):Test set accuracy: 0.771

 

 

 

3、SVM

SVMC_Init:Training set accuracy: 0.769
SVMC_Init:Test set accuracy: 0.755
SVMC_Best(max_dept=1,learning_rate=0.1):Training set accuracy: 0.788
SVMC_Best(max_dept=1,learning_rate=0.1):Test set accuracy: 0.781
DTC(max_dept=3):Training set accuracy: 0.773
DTC(max_dept=3):Test set accuracy: 0.740

 

4、决策树

DTC(max_dept=3):Training set accuracy: 0.773
DTC(max_dept=3):Test set accuracy: 0.740

 

5、随机森林

RFC_Best:Training set accuracy: 0.764
RFC_Best:Test set accuracy: 0.750

 

6、提升树

GBC(max_dept=1,learning_rate=0.1):Training set accuracy: 0.804
GBC(max_dept=1,learning_rate=0.1):Test set accuracy: 0.781

 

7、神经网络

MLPC_Init:Training set accuracy: 0.743
MLPC_Init:Test set accuracy: 0.672

 

 

 

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服