python opencv+pytesseract 验证码识别

   日期:2020-08-28     浏览:136    评论:0    
核心提示:利用python实现验证码识别,先配置所需环境,安装pillow和pytesseract 这两个库,之后关键的还需要配置好引擎,安装好Tesseract-OCR.exe之后,搜索找到pytesseract.py,打开该.py文件,找到 tesseract_cmd,改变它的值为刚才安装 tesseract.exe 的路径。最后利用python,opencv+pytesseract进行验证码识别,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。

文章目录

      • 一、环境配置
      • 二、验证码识别
        • 实例1
        • 实例2
        • 实例3

一、环境配置

  • 需要 pillow 和 pytesseract 这两个库,pip install 安装就好了。
pip install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
  • 安装好Tesseract-OCR.exe
  • pytesseract 库的配置:搜索找到pytesseract.py,打开该.py文件,找到 tesseract_cmd,改变它的值为刚才安装 tesseract.exe 的路径。

二、验证码识别

识别验证码,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。

实例1

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波 去噪
    dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150)
    # 灰度图像
    gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    # 形态学操作 腐蚀 膨胀
    erode = cv.erode(binary, None, iterations=2)
    dilate = cv.dilate(erode, None, iterations=1)
    cv.imshow('dilate', dilate)
    # 逻辑运算 让背景为白色 字体为黑 便于识别
    cv.bitwise_not(dilate, dilate)
    cv.imshow('binary-image', dilate)
    # 识别
    test_message = Image.fromarray(dilate)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/044.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

识别结果:3n3D

Process finished with exit code 0

实例2

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波 去噪
    blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
    cv.imshow('dst', blur)
    # 灰度图像
    gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    print(f'二值化自适应阈值:{ret}')
    cv.imshow('binary', binary)
    # 形态学操作 获取结构元素 开操作
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2))
    bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
    cv.imshow('bin1', bin1)
    kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3))
    bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel)
    cv.imshow('bin2', bin2)
    # 逻辑运算 让背景为白色 字体为黑 便于识别
    cv.bitwise_not(bin2, bin2)
    cv.imshow('binary-image', bin2)
    # 识别
    test_message = Image.fromarray(bin2)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/045.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

二值化自适应阈值:181.0
识别结果:8A62N1

Process finished with exit code 0

实例3

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波 去噪
    blur = cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
    cv.imshow('dst', blur)
    # 灰度图像
    gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
    # 二值化 设置阈值 自适应阈值的话 黄色的4会提取不出来
    ret, binary = cv.threshold(gray, 185, 255, cv.THRESH_BINARY_INV)
    print(f'二值化设置的阈值:{ret}')
    cv.imshow('binary', binary)
    # 逻辑运算 让背景为白色 字体为黑 便于识别
    cv.bitwise_not(binary, binary)
    cv.imshow('bg_image', binary)
    # 识别
    test_message = Image.fromarray(binary)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/045.jpg')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

二值化设置的阈值:185.0
识别结果:7364

Process finished with exit code 0

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服