一个简单的mapreduce程序全排列

   日期:2020-08-25     浏览:86    评论:0    
核心提示:全排序其实就是全局排序,就是使得所有数据按序排列输出,和我们平常做的给一个数组排序没有什么区别,唯一的区别就是数据量的不同,这里涉及的数据量是TB级别的,这就意味着不可能简单地把数据加载进内存进行排序,需要用到分布式计算,所以就产生了Hadoop的全排序,Hadoop的全排序在实际应用有着重要的作用。1)准备数据(数据已经进行过分组聚合操作):2)封装文件各字段:package com.Sort.Whole;import org.apache.hadoop.io.WritableComparab

全排序其实就是全局排序,就是使得所有数据按序排列输出,和我们平常做的给一个数组排序没有什么区别,唯一的区别就是数据量的不同,这里涉及的数据量是TB级别的,这就意味着不可能简单地把数据加载进内存进行排序,需要用到分布式计算,所以就产生了Hadoop的全排序,Hadoop的全排序在实际应用有着重要的作用。

1)准备数据(数据已经进行过分组聚合操作):

2)封装文件各字段:

package com.Sort.Whole;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {
    private Float upFlow;  //NA_Sales字段
    private Float downFlow; //Other_Sales字段
    private Float sumFlow;  //sum_Sales字段

    public FlowBean() {
        super();
    }

    public FlowBean(Float upFlow, Float downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    **//比较,以sumFlow进行从大到小排序** 
    public int compareTo(FlowBean flowBean) {
        int result;
        if (sumFlow > flowBean.getSumFlow()){
            result = -1;
        }else if(sumFlow < flowBean.getSumFlow()){
            result = 1;
        }else{
            result = 0;
        }
        return result;
    }

    //序列化
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeFloat(upFlow);
        dataOutput.writeFloat(downFlow);
        dataOutput.writeFloat(sumFlow);
    }

    //反序列
    public void readFields(DataInput dataInput) throws IOException {
        upFlow = dataInput.readFloat();
        downFlow = dataInput.readFloat();
        sumFlow = dataInput.readFloat();
    }

    public Float getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(Float upFlow) {
        this.upFlow = upFlow;
    }

    public Float getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(Float downFlow) {
        this.downFlow = downFlow;
    }

    public Float getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(Float sumFlow) {
        this.sumFlow = sumFlow;
    }

    @Override
    public String toString() {
        return upFlow +
                "\t" + downFlow +
                "\t" + sumFlow
                ;
    }
}

3) Map程序,我们mapreduce程序以key进行排序(如果不指定排序规则,则以字典作为排序规则),那我们可以将之前的value作为key,key作为value来进行排序,那么该键值对就是Map程序的输出,Reduce程序的输入;

package com.Sort.Whole;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowCountSortMappper extends Mapper<LongWritable, Text,FlowBean,Text> {
**//LongWritable是为偏移量,Text是每一行的内容,FlowBean封装upFlow,downFlow,sumFlow三个字段(第二字段开始到第四个字段),Text是每一行的第一个字段**
    FlowBean k = new FlowBean();
    Text v = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //Action 877.83 1751.18 2629.01

    //1. 获取一行
        String line = value.toString();

        //2. 切割
        String[] fields = line.split(",");

        //3.封装对象
        String Genre = fields[0];
        Float upFlow = Float.parseFloat(fields[fields.length-3]);
        Float downFlow = Float.parseFloat(fields[fields.length-2]);
        Float sumFlow = Float.parseFloat(fields[fields.length-1]);

        k.setDownFlow(downFlow);
        k.setUpFlow(upFlow);
        k.setSumFlow(sumFlow);

        v.set(Genre);

        //4.写出
        context.write(k,v);


    }
}
  1. Reduce程序,它的输入既是Map程序的输出,它的输出key应是源文件的第一个字段,value是源文件中的其他字段
package com.Sort.Whole;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean> {

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {

        //Action 877.83 1751.18 2629.01

        for (Text value : values) {
            context.write(value, key);
        }
    }
}
**5)主程序: **

```java
package com.Sort.Whole;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowCountSortDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    //这里请注意:Workerhdfs目录下不能有output4文件
         args = new String[]{"E:\\谷歌文件\\谷歌数据集\\","F:\\scala\\Workerhdfs\\output4"};
        //1.获取job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        //2.设置jar路径
        job.setJarByClass(FlowCountSortDriver.class);

        //3.关联mapper和reducer
        job.setMapperClass(FlowCountSortMappper.class);
        job.setReducerClass(FlowCountSortReducer.class);
        //4 设置mapper输出的key和value类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        //5. 设置最终输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);


        //6.设置输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

运行结果如下:

part-r-00000文件内容,第四字段按照从大到小排列,简单的排列成功

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服