本节将使用PyTorch来更简洁地实现基于循环神经网络的语言模型。首先,我们读取周杰伦专辑歌词数据集。
import time
import math
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
1. 定义模型
PyTorch中的nn
模块提供了循环神经网络的实现。下面构造一个含单隐藏层、隐藏单元个数为256的循环神经网络层rnn_layer
。
num_hiddens = 256
# rnn_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens) # 已测试
rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
与上一节中实现的循环神经网络不同,这里rnn_layer
的输入形状为(时间步数, 批量大小, 输入个数)。其中输入个数即one-hot向量长度(词典大小)。此外,rnn_layer
作为nn.RNN
实例,在前向计算后会分别返回输出和隐藏状态h,其中输出指的是隐藏层在各个时间步上计算并输出的隐藏状态,它们通常作为后续输出层的输入。需要强调的是,该“输出”本身并不涉及输出层计算,形状为(时间步数, 批量大小, 隐藏单元个数)。而nn.RNN
实例在前向计算返回的隐藏状态指的是隐藏层在最后时间步的隐藏状态:当隐藏层有多层时,每一层的隐藏状态都会记录在该变量中。
来看看我们的例子,输出形状为(时间步数, 批量大小, 隐藏单元个数),隐藏状态h的形状为(层数, 批量大小, 隐藏单元个数)。
num_steps = 35
batch_size = 2
state = None
X = torch.rand(num_steps, batch_size, vocab_size)
Y, state_new = rnn_layer(X, state)
print(Y.shape, len(state_new), state_new[0].shape)
输出:
torch.Size([35, 2, 256]) 1 torch.Size([2, 256])
接下来我们继承Module
类来定义一个完整的循环神经网络。它首先将输入数据使用one-hot向量表示后输入到rnn_layer
中,然后使用全连接输出层得到输出。输出个数等于词典大小vocab_size
。
# 本类已保存在d2lzh_pytorch包中方便以后使用
class RNNModel(nn.Module):
def __init__(self, rnn_layer, vocab_size):
super(RNNModel, self).__init__()
self.rnn = rnn_layer
self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1)
self.vocab_size = vocab_size
self.dense = nn.Linear(self.hidden_size, vocab_size)
self.state = None
def forward(self, inputs, state): # inputs: (batch, seq_len)
# 获取one-hot向量表示
X = d2l.to_onehot(inputs, self.vocab_size) # X是个list
Y, self.state = self.rnn(torch.stack(X), state)
# 全连接层会首先将Y的形状变成(num_steps * batch_size, num_hiddens),它的输出
# 形状为(num_steps * batch_size, vocab_size)
output = self.dense(Y.view(-1, Y.shape[-1]))
return output, self.state
2. 训练模型
同上一节一样,下面定义一个预测函数。这里的实现区别在于前向计算和初始化隐藏状态的函数接口。
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
char_to_idx):
state = None
output = [char_to_idx[prefix[0]]] # output会记录prefix加上输出
for t in range(num_chars + len(prefix) - 1):
X = torch.tensor([output[-1]], device=device).view(1, 1)
if state is not None:
if isinstance(state, tuple): # LSTM, state:(h, c)
state = (state[0].to(device), state[1].to(device))
else:
state = state.to(device)
(Y, state) = model(X, state)
if t < len(prefix) - 1:
output.append(char_to_idx[prefix[t + 1]])
else:
output.append(int(Y.argmax(dim=1).item()))
return ''.join([idx_to_char[i] for i in output])
让我们使用权重为随机值的模型来预测一次。
model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)
输出:
'分开戏想暖迎凉想征凉征征'
接下来实现训练函数。算法同上一节的一样,但这里只使用了相邻采样来读取数据。
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
corpus_indices, idx_to_char, char_to_idx,
num_epochs, num_steps, lr, clipping_theta,
batch_size, pred_period, pred_len, prefixes):
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
model.to(device)
state = None
for epoch in range(num_epochs):
l_sum, n, start = 0.0, 0, time.time()
data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
for X, Y in data_iter:
if state is not None:
# 使用detach函数从计算图分离隐藏状态, 这是为了
# 使模型参数的梯度计算只依赖一次迭代读取的小批量序列(防止梯度计算开销太大)
if isinstance (state, tuple): # LSTM, state:(h, c)
state = (state[0].detach(), state[1].detach())
else:
state = state.detach()
(output, state) = model(X, state) # output: 形状为(num_steps * batch_size, vocab_size)
# Y的形状是(batch_size, num_steps),转置后再变成长度为
# batch * num_steps 的向量,这样跟输出的行一一对应
y = torch.transpose(Y, 0, 1).contiguous().view(-1)
l = loss(output, y.long())
optimizer.zero_grad()
l.backward()
# 梯度裁剪
d2l.grad_clipping(model.parameters(), clipping_theta, device)
optimizer.step()
l_sum += l.item() * y.shape[0]
n += y.shape[0]
try:
perplexity = math.exp(l_sum / n)
except OverflowError:
perplexity = float('inf')
if (epoch + 1) % pred_period == 0:
print('epoch %d, perplexity %f, time %.2f sec' % (
epoch + 1, perplexity, time.time() - start))
for prefix in prefixes:
print(' -', predict_rnn_pytorch(
prefix, pred_len, model, vocab_size, device, idx_to_char,
char_to_idx))
使用和上一节实验中一样的超参数(除了学习率)来训练模型。
num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2 # 注意这里的学习率设置
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
corpus_indices, idx_to_char, char_to_idx,
num_epochs, num_steps, lr, clipping_theta,
batch_size, pred_period, pred_len, prefixes)
输出:
epoch 50, perplexity 1.012515, time 0.16 sec
- 分开 我去定不 却已在不要再 我爱你看着我已经 我跟 爸 爱是我的快像大只 妈妈整全画怕跟 没有你
- 不分开 我有多年样 后不知不觉 你已经很久 不能就能知不觉 你已经离开我 不知不觉 我跟了这节奏 后知
epoch 100, perplexity 1.009353, time 0.15 sec
- 分开 我在定的让我有多知道 有一个人已什么会痛 有教堂有你烦故事 有教堂有城堡 每天忙碌地的寻找 到
- 不分开不了口多著一口默默默 我妈 我不要再想 我爱 你的微我有多这样 生妈 这爱你 后悔着对不起 一枚铜
epoch 150, perplexity 1.008741, time 0.16 sec
- 分开 我在定的可以让我知道你说你只会我依不知错搞错 拜托 我想是你的脑袋有问题 随便说说 其实我早已经猜
- 不分开不了口不著 纪录那最心始的美丽 纪录第一次遇见的你 如果我遇见你是一场悲剧 我想我这辈子注定一个人演
epoch 200, perplexity 1.007901, time 0.16 sec
- 分开 我有人看着你 手过去对 全来像伊斯坦堡 你说你说啊不会不要 这样打我妈妈 我想的声宣布 对你依依
- 不分开不想就多著 心碎起 娘子 从前 教育别人的家庭 别人的爸爸种种的暴力因素一定都会有原因 但是呢
epoch 250, perplexity 1.007771, time 0.16 sec
- 分开 我时空被你在的对 泪拆封动 所有回忆对着我进攻 我 我不人 漂亮心让我面红的可爱女人 温柔
- 不分开不想就多难熬 穿过 在因为闷了很久 是因为想说太多 是心理起了作用 你的的苦笑常常陪着你 在一起有
小结
- PyTorch的
nn
模块提供了循环神经网络层的实现。 - PyTorch的
nn.RNN
实例在前向计算后会分别返回输出和隐藏状态。该前向计算并不涉及输出层计算。