时时刻刻保持一颗不断学习的心,要做一个有心人!
人工智能行业涉及到的英文缩写颇多,现总结如下。会不断保持更新,敬请各位小伙伴们关注~谢谢大家!
前方高能!!!
人工智能常用英文缩写
一、科普篇:
NLP:Natural Language Processing,自然语言处理;
CV:Computer Vision,计算机视觉;
BI:Business Intelligence,商业智能;
RS:Recommender Systems,推荐系统;
KDD:Knowledge Discovery in Database,知识发现;
CVPR:Computer Vision and Pattern Recognition,计算机视觉与模式识别大会;
ILSVRC:ImageNet Large Scale Visual Recongition Challenge,大规模图像识别大赛;
二、机器学习篇:
TP:True Positive,真正类;
FN:False Negative,假反类;
FP:False Positive,假正类;
TN:True Negative,真反类;
AUC:Area Under Curve,曲线下面积;
ROC:Receiver Operating Characteristic,受试者工作特征曲线;
ROI:Region Of Interest,感兴趣区域;
MAE:Mean Absolute Error,平均绝对误差;
MSE:Mean Square Error,均方误差;
RMSE:Root Mean Square Error,均方根误差;
MLE:Maximum Likelihood Estimation,最大似然估计;
MAP:Maximum A Posterior Estimation,最大后验估计;
SSR:Sum of Squares for Regression,回归平方和;
SSE:Sum of Squares for Error,残差平方和;
SST:Sum of Squares for Total,总偏差平方和(SST = SSR + SSE);
CART:Classification And Regression Tree,分类回归树算法;
PCA:Principal Component Analysis,主成分分析(一种常用的无监督学习方法,属于降维方法);
SVM:Support Vector Machine,支持向量机(一种二分类模型);
TF-IDF:Term Frequency-Inverse Document Frequency,词频-逆向文档频率;
LFM:Latent Factor Model,隐语义模型;
LSA:Latent Semantic Analysis,潜在语义分析(一种无监督学习方法);
PLSA:Probabilistic Latent Semantic Analysis,概率潜在语义分析模型(一种无监督学习方法);
LDA:Latent Dirichlet Allocation,潜在狄利克雷分配(一种文档主题生成模型),Linear Discriminant Analysis,线性判别分析;
QDA:Quadratic Discriminant Analysis,二次判别分析;
LE:Laplacian Eigenmaps,拉普拉斯特征映射;
LLE:Locally Linear Embedding,局部线性嵌入;
VSM:Vector Space Model,向量空间模型;
KNN:K-Nearest Neighbor,K最近邻分类算法;
ANN:Approximate Nearest Neighbor,近似最近邻算法;
MRF:Markov Random Field,马尔可夫随机场;
HMM:Hidden Markov Model,隐马尔可夫模型(一种生成模型);
EM:Expectation Maximization algorithm,期望极大算法,简称EM算法;
GEM:Generalized Expectation Maximization algorithm,广义期望极大算法;
SMO:Sequential Minimal Optimization,序列最小最优化算法;
CRF:Conditional Random Field,条件随机场;
三、神经网络篇:
MLP:MultiLayer Perceptron,多层感知机;
FNN:Feedforward Neural Network,前馈神经网络;
CNN:Convolutional Neural Network,卷积神经网络;
RNN:Recurrent Neural Network,循环神经网络;
LSTM:Long Short Term Memory,长短期记忆网络;
GRU:Gated Recurrent Unit,门控循环单元;
四、推荐系统篇:
LR:Linear Regression(线性回归,解决监督学习中的回归问题),Logistic Regression(逻辑回归,解决监督学习中的分类问题);
GBDT:Gradient Boosting Decision Tree,梯度提升树;
MART:Multiple Additive Regression Tree,多重累计回归树(相当于GBDT);
ALS:Alternating Least Squares,交替最小二乘法;
BGD:Batch Gradient Descent,批量梯度下降;
SGD:Stochastic Gradient Descent,随机梯度下降;
MBGD:Mini-Batch Gradient Descent,小批量梯度下降;
MCMC:Markov Chain Monte Carlo,马尔可夫链蒙特卡罗法;
EVD:Eigen Value Decmoposition,特征值分解;
SVD:Singular Value Decomposition,奇异值分解;
MF:Matrix Factorization,矩阵分解;
NMF:Non-negative Matrix Factorization,非负矩阵分解;
FM:Factorization Machine,因子分解机;
五、计算机视觉篇:
CNN:Convolutional Neural Network,卷积神经网络;
FCN:Fully Convolutional Network,全卷积网络;
GAN:Generative Adversarial Nets,生成式对抗网络;
DQN:Deep Q-Network,深度Q网络(基于Q学习的强化学习算法);