二叉树展开为链表
给定一个二叉树,原地将它展开为一个单链表。
例如,给定二叉树
1
/ \
2 5
/ \ \
3 4 6
将其展开为:
1
\
2
\
3
\
4
\
5
\
6
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/flatten-binary-tree-to-linked-list
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
具体做法是,对于当前节点,如果其左子节点不为空,则在其左子树中找到最右边的节点,作为前驱节点,将当前节点的右子节点赋给前驱节点的右子节点(其实就是找左子节点的最大子节点),然后将当前节点的左子节点赋给当前节点的右子节点,并将当前节点的左子节点设为空。对当前节点处理结束后,继续处理链表中的下一个节点,直到所有节点都处理结束。
刚开始我想用前序遍历,但是弄来弄去把我自己都弄晕了,到底什么叫“原地”?题目里说要原地。
后来想了想,这个题其实有规律的。
不过这个解法的时间复杂度我不太会算。。。
代码
class Solution {
public:
void flatten(TreeNode* root) {
TreeNode *curr = root;
while (curr != nullptr) {
if (curr->left != nullptr) {
auto next = curr->left;
auto predecessor = next;
while (predecessor->right != nullptr) {
predecessor = predecessor->right;
}
predecessor->right = curr->right;
curr->left = nullptr;
curr->right = next;
}
curr = curr->right;
}
}
};
复杂度
时间复杂度:O(n),其中 n 是二叉树的节点数。展开为单链表的过程中,需要对每个节点访问一次,在寻找前驱节点的过程中,每个节点最多被额外访问一次。(官方解法算的)
空间复杂度:O(1)。