STM32串口通信配置分别为USART1+USART2+USART3+UART4
文章目录
- STM32串口通信配置分别为USART1+USART2+USART3+UART4
- 一、串口一的配置
- 二、串口二的配置
- 三、串口三的配置
- 四、串口四的配置
在stm32中UART和USART是不相同的
USART是通用同步/异步串行接收/发送器
UART是通用异步收发传输器
简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是 UART。
USART支持同步模式,因此USART 需要同步时钟信号USART_CK(如STM32 单片机),通常情况同步信号很少使用,因此一般的单片机 UART和USART使用方 式是一样的,都使用异步模式。
UART需要固定的波特率,就是说两位数据的间隔要相等。 UART总线是异步串口,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、 UART发送器组成,硬件上有两根线,一根用于发送,一根用于接收。 显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
UART是一个并行输入成为串行输出的芯片,通常集成在主板上,多数是16550AFN芯片。因为计算机内部采用并行数据,不能直接把数据发到Modem,必须经过UART整理才能进行异步传输,其过程为:CPU先把准备写入串行设备的数据放到UART的寄存器(临时内存块)中,再通过FIFO(First Input First Output,先入先出队列)传送到串行设备,若是没有FIFO,信息将变得杂乱无章,不可能传送到Modem。
作为接口的一部分,UART还提供以下功能:将由计算机内部传送过来的并行数据转换为输出的串行数据流。将计算机外部来的串行数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入奇偶校验位,并对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记,并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠标也是串行设备)。可以处理计算机与外部串行设备的同步管理问题。
USART收发模块一般分为三大部分:时钟发生器、数据发送器和接收器。控制寄存器为所有的模块共享。时钟发生器由同步逻辑电路(在同步从模式下由外部时钟输入驱动)和波特率发生器组成。发送时钟引脚XCK仅用于同步发送模式下,发送器部分由一个单独的写入缓冲器(发送UDR)、一个串行移位寄存器、校验位发生器和用于处理不同浈结构的控制逻辑电路构成。使用写入缓冲器,实现了连续发送多浈数据无延时的通信。接收器是USART模块最复杂的部分,最主要的是时钟和数据接收单元。数据接收单元用作异步数据的接收。除了接收单元,接收器还包括校验位校验器、控制逻辑、移位寄存器和两级接收缓冲器(接收UDR)。接收器支持与发送器相同的帧结构,同时支持桢错误、数据溢出和校验错误的检测。USART是一个全双工通用同步/异步串行收发模块,该接口是一个高度灵活的串行通信设备。
一、串口一的配置
//(初始化+中断配置+中断接收函数)
#include "stm32f10x_usart.h"
#include "stm32f10x.h"
#include "stm32f10x_iwdg.h"
u8 USART1_RX_BUF[21];
u8 USART1_RX_CNT=0;
void IWDG_Configuration(void);
void Usart1_Init(u32 bound)
{
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC, ENABLE);//使能USART1,GPIOA,C时钟
//USART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9
//USART1_RX GPIOA.10初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10
//Usart1 NVIC 配置
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 0-3;
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器
//USART 初始化设置
USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断
USART_Cmd(USART1, ENABLE); //使能串口1
}
void USART1_Send_Data(u8 *buf,u16 len)
{
u16 t;
GPIO_SetBits(GPIOC,GPIO_Pin_9);
// RS485_TX_EN=1; //设置为发送模式
for(t=0;t<len;t++) //循环发送数据
{
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)==RESET); //循环发送,直到发送完毕
USART_SendData(USART1,buf[t]);
}
while(USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET);
GPIO_ResetBits(GPIOC,GPIO_Pin_9);
// RS485_TX_EN=0; //设置为接收模式
}
void main(void)
{
Usart1_Init(9600);//串口1波特率设置为9600
IWDG_Configuration();
while(1)
{
IWDG_ReloadCounter();//4s内必须喂狗不然复位
if(USART1_RX_CNT==21)//数据接收完成
{
USART1_RX_CNT=0;//指针复位
//将接收到的数据发送出去
USART1_Send_Data(USART1_RX_BUF,21);//通过串口1将接收到的固定长度字符发送出去
}
}
}
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
Res =USART_ReceiveData(USART1); //读取接收到的数据
if(USART1_RX_CNT<21)//对于接收指定长度的字符串
{
USART1_RX_BUF[USART1_RX_CNT]=Res; //记录接收到的值
USART1_RX_CNT++; //接收数据增加1
}
}
//溢出-如果发生溢出需要先读SR,再读DR寄存器则可清除不断入中断的问题
if(USART_GetFlagStatus(USART1,USART_FLAG_ORE) == SET)
{
USART_ReceiveData(USART1);
USART_ClearFlag(USART1,USART_FLAG_ORE);
}
USART_ClearFlag(UART1,USART_IT_RXNE); //一定要清除接收中断
}
void IWDG_Configuration(void)
{
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_256);
IWDG_SetReload(781);//781(5s时间)
IWDG_SetReload(3125);//781(20s时间)
IWDG_Enable();//启用定时器
IWDG_ReloadCounter();
}
二、串口二的配置
//始化+中断配置+中断接收函数)
#include "stm32f10x_usart.h"
#include "stm32f10x.h"
#include "stm32f10x_iwdg.h"
u8 USART2_RX_BUF[250];
u8 USART2_RX_CNT=0;
u16 USART2_RX_STA=0; //接收状态标记
void Usart2_Init(u32 bound)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
//|RCC_APB2Periph_AFIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能GPIOA时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);//使能USART2时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA2
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2,ENABLE);//复位串口2
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2,DISABLE);//停止复位
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 0-3;
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; //使能串口2中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; //先占优先级2级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级2级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
USART_InitStructure.USART_BaudRate = bound;//波特率设置
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//8位数据长度
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;///奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//收发模式
USART_Init(USART2, &USART_InitStructure); ; //初始化串口
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启中断
USART_Cmd(USART2, ENABLE); //使能串口
}
void USART2_Send_Data(u8 *buf,u16 len)
{
u16 t;
for(t=0;t<len;t++) //循环发送数据
{
while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);
USART_SendData(USART2,buf[t]);
}
while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);
}
void USART2_Receive_Data(u8 *buf)
{
u8 rxlen=USART2_RX_CNT;
u8 i=0;
delay_ms(10); //等待10ms,连续超过10ms没有接收到一个数据,则认为接收结束
while(rxlen!=USART2_RX_CNT)
{
rxlen=USART2_RX_CNT;
delay_ms(10);
}
for(i=0;i<(USART2_RX_CNT);i++)
{
buf[i] = USART2_RX_BUF[i];
USART2_RX_BUF[i] = 0;
}
USART2_RX_CNT=0; //清零
}
void main(void)
{
Usart2_Init(9600);//串口2特率设置为9600
while(1)
{
if(USART2_RX_STA)//数据接收完成
{
USART2_RX_STA=0;
//将接收到的数据发送出去
USART2_Send_Data(USART2_RX_BUF,USART2_RX_CNT);//通过串口1将接收到的固定长度字符发送出去
USART2_RX_CNT=0;//指针复位
}
}
}
void USART2_IRQHandler(void)
{
u8 res;
if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) //接收到数据
{
res =USART_ReceiveData(USART2); //读取接收到的数据
if(USART2_RX_STA==0)
{
USART2_RX_BUF[USART2_RX_CNT] = res; //记录接收到的值
//当数据结尾收到0xA0和0xA1代表数据接收完成,是一串完整的数据
if(USART2_RX_BUF[USART2_RX_CNT-1]==0xA0&&USART2_RX_BUF[USART2_RX_CNT]==0xA1)
USART2_RX_STA=1;//表示接收数据结束
USART2_RX_CNT++; //接收数据增加1
}
}
}
//溢出-如果发生溢出需要先读SR,再读DR寄存器则可清除不断入中断的问题
if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET)
{
USART_ReceiveData(USART2);
USART_ClearFlag(USART2,USART_FLAG_ORE);
}
USART_ClearFlag(UART2,USART_IT_RXNE); //一定要清除接收中断
}
三、串口三的配置
//(初始化+中断配置+中断接收函数)
#include "stm32f10x_usart.h"
#include "stm32f10x.h"
#define USART3_TIMEOUT_Setting 800 //(ms)
u8 USART3_RX_BUF[250];
u16 USART3_RX_CNT=0;
u16 USART3_RX_TIMEOUT=0; //接收状态标记
void Timer1CountInitial(void);
void USART3_Init(u32 baud)
{
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure; //声明一个结构体变量,用来初始化GPIO
//使能串口的RCC时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB , ENABLE); //使能UART3所在GPIOB的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
//串口使用的GPIO口配置
// Configure USART3 Rx (PB.11) as input floating
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Configure USART3 Tx (PB.10) as alternate function push-pull
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
//配置串口
USART_InitStructure.USART_BaudRate = baud;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
// Configure USART3
USART_Init(USART3, &USART_InitStructure);//配置串口3
// Enable USART3 Receive interrupts 使能串口接收中断
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
// Enable the USART3
USART_Cmd(USART3, ENABLE);//使能串口3
//串口中断配置
//Configure the NVIC Preemption Priority Bits
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
// Enable the USART3 Interrupt
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
void USART3_Sned_Char(u8 temp)
{
USART_SendData(USART3,(u8)temp);
while(USART_GetFlagStatus(USART3,USART_FLAG_TXE)==RESET);
}
void USART3_Sned_Char_Buff(u8 buf[],u32 len)
{
u32 i;
for(i=0;i<len;i++)
USART3_Sned_Char(buf[i]);
}
void main(void)
{
Timer1CountInitial();
Usart3_Init(9600);//串口3波特率设置为9600
while(1)
{
if(USART3_RX_TIMEOUT==USART3_TIMEOUT_Setting)
{
USART3_RX_TIMEOUT=0;
USART3_Sned_Char_Buff(USART3_RX_BUF,USART3_RX_CNT);//将接收到的数据发送出去
USART3_RX_CNT=0;
}
}
}
void USART3_IRQHandler(void) //串口3中断服务程序
{
u8 Res;
if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET)
{
USART3_RX_TIMEOUT=0;
USART3_RX_BUF[USART3_RX_CNT++] = USART_ReceiveData(USART3); //读取接收到的数据
}
//溢出-如果发生溢出需要先读SR,再读DR寄存器则可清除不断入中断的问题
if(USART_GetFlagStatus(USART3,USART_FLAG_ORE) == SET)
{
USART_ReceiveData(USART3);
USART_ClearFlag(USART3,USART_FLAG_ORE);
}
USART_ClearITPendingBit(USART3, USART_IT_RXNE);
}
//放到主函数的初始化中初始化
void Timer1CountInitial(void)
{
//定时=36000/72000x2=0.001s=1ms;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
///////////////////////////////////////////////////////////////
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 100-1;//自动重装值(此时改为10ms)
TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;//时钟预分频
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //时钟分频1
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);
TIM_ClearFlag(TIM1,TIM_FLAG_Update);
TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);
TIM_Cmd(TIM1, ENABLE);
}
void TIM1_UP_IRQHandler(void)
{
//TIM_TimeBaseStructure.TIM_Period = 100-1;//自动重装值(此时改为10ms)
if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)
{
if(USART3_RX_TIMEOUT<USART3_TIMEOUT_Setting)
USART3_RX_TIMEOUT++;
}
TIM_ClearITPendingBit(TIM1,TIM_IT_Update);
}
四、串口四的配置
//(初始化+中断配置+中断接收函数)
#include "stm32f10x_usart.h"
#include "stm32f10x.h"
#define USART4_TIMEOUT_Setting 800 //(ms)
u8 USART4_RX_BUF[250];
u16 USART4_RX_CNT=0;
u16 USART2_RX_STA=0; //接收状态标记
void Systick_delay_init(u8 SYSCLK);
u8 virtual_delay(u32 num,u8 unit);
//通用异步收发器UART4
void UART4_Init(u32 bound)
{
USART_InitTypeDef USART_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
//used for USART3 full remap
//GPIO_PinRemapConfig(GPIO_FullRemap_USART3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE);//for UART4
//Configure RS485_TX_EN PIN
GPIO_InitStructure.GPIO_Pin = RS485_TX_EN_PIN; //PC9端口配置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(RS485_TX_EN_PORT, &GPIO_InitStructure);
RS485_TX_EN=0; //设置485默认为接收模式
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOC, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = bound;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(UART4, &USART_InitStructure);
//USART_Init(USART3, &USART_InitStructure);
USART_Cmd(UART4, ENABLE);
USART_ITConfig(UART4, USART_IT_RXNE, ENABLE);//开启串口接受中断
USART_ClearFlag(UART4,USART_FLAG_TC);
}
//USART1查询接收到的数据
//buf:接收缓存首地址
//len:读到的数据长度
void UART4_Receive_Data(u8 *buf)
{
u8 rxlen=21;
u8 i=0;
delay_ms(10); //等待10ms,连续超过10ms没有接收到一个数据,则认为接收结束
RS485_RX_FLAG = 0;
if((UART4_RX_BUF[0]==0x01)&&(UART4_RX_BUF[1]==0x03))
{
for(i=0;i<rxlen;i++)
{
buf[i]=UART4_RX_BUF[i];
UART4_RX_BUF[i] = 0;
}
RS485_RX_FLAG = 1;
}
UART4_RX_CNT=0; //清零
}
//USART1发送len个字节.
//buf:发送区首地址
//len:发送的字节数(为了和本代码的接收匹配,这里建议不要超过64个字节)
void UART4_Send_Data(u8 *buf,u16 len)
{
u16 t;
RS485_TX_EN=1; //设置为发送模式
for(t=0;t<len;t++) //循环发送数据
{
while(USART_GetFlagStatus(UART4,USART_FLAG_TC)==RESET); //循环发送,直到发送完毕
USART_SendData(UART4,buf[t]);
}
while(USART_GetFlagStatus(UART4, USART_FLAG_TC) == RESET);
RS485_TX_EN=0; //设置为接收模式
}
void main(void)
{
Systick_delay_init(72);
Usart4_Init(9600);//串口4波特率设置为9600
while(1)
{
if(USART2_RX_STA)
{
if(virtual_delay(USART4_TIMEOUT_Setting,MS))//超过800ms空闲则可以读取数据
{
UART4_Send_Data(UART4_RX_BUF,UART4_RX_CNT);
USART2_RX_STA=0;
UART4_RX_CNT=0;
}
}
}
}
void UART4_IRQHandler(void) //UART4 Receive Interrupt
{
u8 Res;
if(USART_GetITStatus(UART4, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(UART4);//(USART1->DR); //读取接收到的数据
UART4_RX_BUF[UART4_RX_CNT&0xFF]=Res; //回传的数据存入数组,0x3F限制为64个数值
UART4_RX_CNT++;
USART2_RX_STA=1;
}
if( USART_GetITStatus(UART4, USART_IT_TC) == SET )
{
USART_ClearFlag(UART4, USART_FLAG_TC);
}
//溢出-如果发生溢出需要先读SR,再读DR寄存器则可清除不断入中断的问题
if(USART_GetFlagStatus(UART4,USART_FLAG_ORE) == SET)
{
USART_ReceiveData(UART4);
USART_ClearFlag(UART4,USART_FLAG_ORE);
}
// USART_ITConfig(UART4, USART_IT_RXNE, DISABLE);//临时关闭接收中断
USART_ClearFlag(UART4,USART_IT_RXNE); //一定要清除接收中断
}
//初始化延迟函数
//SYSTICK的时钟固定为HCLK时钟的1/8
//SYSCLK:系统时钟
void Systick_delay_init(u8 SYSCLK)
{
SysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟 HCLK/8
// SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SYSCLK/8;
fac_ms=(u16)fac_us*1000;
}
u8 virtual_delay(u32 num,u8 unit)
{
u32 temp;
if(virtual_delay_status==RESET) // SYSTICK空闲,可以使用
{
if(unit==MS)
{
SysTick->LOAD=(u32)num*Delay_SYSCLK*125;//时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL=0x01 ; //开始倒数
}else if(unit==US)
{
SysTick->LOAD=num*Delay_SYSCLK/8; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL=0x01 ; //开始倒数
}
virtual_delay_status=SET;
return 0;
}
else
{ //virtual_delay_status==SET SYSTICK被占用
temp=SysTick->CTRL;
if(!(temp&0x01&&!(temp&(1<<16))))//等待时间到达
{
SysTick->CTRL=0x00; //关闭计数器
SysTick->VAL =0x00; //清空计数器
virtual_delay_status=RESET;
return 1;
}else return 0;
}
}