爬取拉勾网并进行数据分析

   日期:2020-07-12     浏览:105    评论:0    
核心提示:又到了一年一度的招聘热季,大量的工作向我们招手,今天我和大家一起看看拉勾网中各公司对于python人才的需求。import jiebaimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom pyecharts import Geofrom wordcloud import WordCloudimport reimport matplotlibfrom imageio import imreadur

又到了一年一度的招聘热季,大量的工作向我们招手,今天我和大家一起看看拉勾网中各公司对于python人才的需求。

import jieba
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyecharts import Geo
from wordcloud import  WordCloud
import re
import matplotlib
from imageio import imread
url="https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false"
def data(page):
    return {
        "first": "true",
        "pn": f"{page}",
        "kd": "python",
        'sid': '4256fece2141497bb5a8e1bfa69bcee7'
    }
def get_cookies():
    headers={
        'origin': 'https://www.lagou.com',
        'referer': 'https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput=',
        'authority': 'www.lagou.com',
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36',
    }
    response=requests.get('https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput=',headers=headers)
    return response.cookies.get_dict()
cookies=get_cookies()
headers={'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36'
         ,'host':'www.lagou.com'
         ,'origin': 'https://www.lagou.com'
         ,'referer': 'https://www.lagou.com/jobs/list_python?labelWords=&fromSearch=true&suginput='}
def get_data(data):
    response = requests.post(url=url, headers=headers, data=data, cookies=cookies)
    # json数据
    content = response.json()['content']['positionResult']['result']
    j = 1
    companyLabelstr=''
    for i in content:
        city = i['city']
        companyFullName = i['companyFullName']
        companySize = i['companySize']
        education = i['education']
        positionName = i['positionName']
        salary = i['salary']
        workYear = i['workYear']
        companyLabelList=i['companyLabelList']
        if len(companyLabelList)>0:
            companyLabelList=''.join(companyLabelList)
        else:
            companyLabelList=''
        '''
        companyLabelstr=companyLabelList+companyLabelstr
        print(workYear,companyLabelList)
        print(companyLabelstr)
        '''

        with open('python.csv', 'a+', encoding='utf-8')as f:
            f.write(f'{city},{companyFullName},{companySize},{education},{positionName},{salary},{workYear},{companyLabelList}\n')
    
        print(f'第{j}条数据成功')
        j += 1


if __name__ == '__main__':
    for i in range(1, 11):
        params = data(i)
        get_data(params)

文本信息如图所示:

下面对爬取的文本进行分析

matplotlib.rcParams['font.family']='SimHei'
plt.rcParams['axes.labelsize']=16
plt.rcParams['xtick.labelsize']=14
plt.rcParams['ytick.labelsize']=14
plt.rcParams['legend.fontsize']=12
plt.rcParams['figure.figsize']=[15,9]
data=pd.read_excel(r'C:\Users\2020\Desktop\python2.xls',encoding='utf-8')

1.学历

data['学历'].value_counts().plot(kind='bar',rot=0)


2.工作经验

data['年限'].value_counts().plot(kind='bar',rot=0,color='g')


3.城市分析

plt.rcParams['figure.figsize']=[15,15]
data['城市'].value_counts().plot(kind='pie',autopct='%1.2f%%',explode=np.linspace(0,1.5,18))


4.公司待遇分析
(1)分词操作

a=len(data['公司福利'])
str=''
for i in range(a):
    b=data['公司福利'][i]
    if type(b)==float:
        b=''
    str=str+b
jieba.add_word('五险一金')
jieba.add_word('牛B')
jieba.add_word('年底双薪')
jieba.add_word('带薪年假')
jieba.add_word('股票期权')
jieba.add_word('定期体检')
jieba.add_word('节日礼物')
words = jieba.lcut(str)
counts = {}
for word in words:
    counts[word] = counts.get(word, 0) + 1
items = list(counts.items())
items.sort(key=lambda x: x[1], reverse=True)
with open('词频统计',mode='w',encoding='utf-8')as f:
    for i in range(20):
        word,count=items[i]
        f.writelines('{}\t{}\n'.format(word,count))


(2)词云图展示

with open('词频统计',mode='r',encoding='utf-8')as f:
    text=f.read()
wc=WordCloud(font_path=r'C:\Users\2020\Desktop\simhei.ttf',background_color='white',width=1000,max_words=100,height=860,margin=2).generate(text)
plt.imshow(wc)
plt.axis('off')
plt.show()


5.全国工资水平分析

data2=list(map(lambda x:(data['城市'][x],eval(re.split('k|K',data['工资'][x])[0])*1000),range(len(data))))
data3=pd.DataFrame(data2,index)
data4=list(map(lambda x:(data3.groupby(0).mean()[1].index[x],data3.groupby(0).mean()[1].values[x]),range(len(data3.groupby(0)))))
geo=Geo('全国python工资布局','制作人:止疼',title_color='#fff',title_pos='left',width=1200,height=600,background_color='#404a59')
attr,value=geo.cast(data4)
geo.add('',attr,value,type='heatmap',is_visualmap=True,maptype='china',visual_range=[0,300],visual_text_color='#fff')
geo.render()


本人是python小白,第一次写博客,不会创作,由于上了正心老师和挖掘机小王子老师的课程,自己整合的,如有侵权,请联系,本人立马删除。

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服