本次介绍的两个软件包SFUD/FAL都与FLASH有关,并且都可以独立使用或者结合在一起使用,两个软件包都对操作系统无依赖,可以使用裸机移植,也很方便移植到各种系统。
这两个软件包的作者都是armink,armink的开源仓库地址:https://github.com/armink,更多好玩的软件,请到作者仓库查询。
以下将结合rtthread系统,分别对这两个软件包做下演示。
1.SFUD
SFUD 是一款开源的串行 SPI Flash 通用驱动库。由于现有市面的串行 Flash 种类居多,各个 Flash 的规格及命令存在差异, SFUD 就是为了解决这些 Flash 的差异现状而设计,让我们的产品能够支持不同品牌及规格的 Flash,提高了涉及到 Flash 功能的软件的可重用性及可扩展性,同时也可以规避 Flash 缺货或停产给产品所带来的风险
1.1 主要特点:
- 支持 SPI/QSPI 接口、
- 面向对象(同时支持多个 Flash 对象)
- 可灵活裁剪、扩展性强
- 支持 4 字节地址
1.2 资源占用:
- 标准占用:RAM:0.2KB ROM:5.5KB
- 最小占用:RAM:0.1KB ROM:3.6KB
1.3 设计原理:
- 什么是 SFDP :它是 JEDEC (固态技术协会)制定的串行 Flash 功能的参数表标准,最新版 V1.6B (点击这里查看)。该标准规定了,每个 Flash 中会存在一个参数表,该表中会存放 Flash 容量、写粒度、擦除命令、地址模式等 Flash 规格参数。目前,除了部分厂家旧款 Flash 型号会不支持该标准,其他绝大多数新出厂的 Flash 均已支持 SFDP 标准。所以该库在初始化时会优先读取 SFDP 表参数。
- 不支持 SFDP 怎么办 :如果该 Flash 不支持 SFDP 标准,SFUD 会查询配置文件 ( /sfud/inc/sfud_flash_def.h ) 中提供的 Flash 参数信息表 中是否支持该款 Flash。如果不支持,则可以在配置文件中添加该款 Flash 的参数信息(添加方法详细见 2.5 添加库目前不支持的 Flash)。获取到了 Flash 的规格参数后,就可以实现对 Flash 的全部操作。
1.4 如何移植:
项目地址:https://github.com/armink/SFUD
在移植过程中一定要参考两个资料:项目的readme文档和demo工程。
对于使用rtthread完整版来说,作者已经把SFUD制作成了rtthread的内置组件了,对于使用者只需要勾选就可以了:
勾选后,就已经移植完成了,有点太简单了!
对于rtthread完整版的来说移植太简单了,不利于切换到其他平台,所以本次移植教程以rtthread nano为例,裸机移植可以参考作者的demo工程
- 通过cubmx打开SPI
- 下载SFUD项目源码,并添加到工程目录中;
- 完善sfud_port.c接口文件
① 实现底层SPI/QSPI读写接口:
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size) {
sfud_err result = SFUD_SUCCESS;
spi_user_data_t spi_dev = (spi_user_data_t) spi->user_data;
RT_ASSERT(spi);
HAL_GPIO_WritePin(spi_dev->cs_gpiox, spi_dev->cs_gpio_pin, GPIO_PIN_RESET);
if(write_size && read_size)
{
if(HAL_SPI_Transmit(spi_dev->spix, (uint8_t *)write_buf, write_size, 1000)!=HAL_OK)
{
result = SFUD_ERR_WRITE;
}
while (HAL_SPI_GetState(spi_dev->spix) != HAL_SPI_STATE_READY);
if(HAL_SPI_Receive(spi_dev->spix, (uint8_t *)read_buf, read_size, 1000)!=HAL_OK)
{
result = SFUD_ERR_READ;
}
}else if(write_size)
{
if(HAL_SPI_Transmit(spi_dev->spix, (uint8_t *)write_buf, write_size, 1000)!=HAL_OK)
{
result = SFUD_ERR_WRITE;
}
}else
{
if(HAL_SPI_Receive(spi_dev->spix, (uint8_t *)read_buf, read_size, 1000)!=HAL_OK)
{
result = SFUD_ERR_READ;
}
}
while (HAL_SPI_GetState(spi_dev->spix) != HAL_SPI_STATE_READY);
HAL_GPIO_WritePin(spi_dev->cs_gpiox, spi_dev->cs_gpio_pin, GPIO_PIN_SET);
return result;
}
如果使用的是QSPI通信方式,还需要实现快速读取数据的接口:
#ifdef SFUD_USING_QSPI
static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format,
uint8_t *read_buf, size_t read_size) {
sfud_err result = SFUD_SUCCESS;
RT_ASSERT(spi);
RT_ASSERT(sfud_dev);
RT_ASSERT(rtt_dev);
return result;
}
#endif
本次演示使用的是SPI,所以没有定义SFUD_USING_QSPI这个宏。
② SPI设备对象初始化接口:
static spi_user_data user_spi = { .spix = &hspi2, .cs_gpiox = BSP_DATAFALSH_CS_GPIOX, .cs_gpio_pin = BSP_DATAFALSH_CS_GPIO_PIN };
sfud_err sfud_spi_port_init(sfud_flash *flash) {
sfud_err result = SFUD_SUCCESS;
rt_mutex_init(&lock, "sfud_lock", RT_IPC_FLAG_FIFO);
MX_SPI_Init();
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \ || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0)
SET_BIT(hspi2.Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
switch (flash->index) {
case SFUD_W25QXX_DEVICE_INDEX: {
flash->spi.wr = spi_write_read;
flash->spi.lock = spi_lock;
flash->spi.unlock = spi_unlock;
flash->spi.user_data = &user_spi;
flash->retry.delay = retry_delay_100us;
flash->retry.times = 60 * 10000;
break;
}
}
return result;
}
③ 其他接口移植:
static struct rt_mutex lock;
static char log_buf[256];
static void spi_lock(const sfud_spi *spi) {
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
RT_ASSERT(spi);
RT_ASSERT(sfud_dev);
RT_ASSERT(rtt_dev);
rt_mutex_take(&lock, RT_WAITING_FOREVER);
}
static void spi_unlock(const sfud_spi *spi) {
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
RT_ASSERT(spi);
RT_ASSERT(sfud_dev);
RT_ASSERT(rtt_dev);
rt_mutex_release(&lock);
}
static void retry_delay_100us(void) {
rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
}
void sfud_log_debug(const char *file, const long line, const char *format, ...) {
va_list args;
va_start(args, format);
rt_kprintf("[SFUD](%s:%ld) ", file, line);
rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}
void sfud_log_info(const char *format, ...) {
va_list args;
va_start(args, format);
rt_kprintf("[SFUD]");
rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}
1.5 如何使用:
先说明下本库主要使用的一个结构体 sfud_flash 。SFUD中最重要的就是Flash设备对象,一切操作都是对这个Flash设备对象进行的,每个Flash设备对象独立,所以SFUD也支持系统中存在多个Flash设备对象。
Flash设备对象管理着Flash存储器的所有信息,原型在sfud_def.h中,定义如下:
typedef struct {
char *name;
size_t index;
sfud_flash_chip chip;
sfud_spi spi;
bool init_ok;
bool addr_in_4_byte;
struct {
void (*delay)(void);
size_t times;
} retry;
void *user_data;
#ifdef SFUD_USING_QSPI
sfud_qspi_read_cmd_format read_cmd_format;
#endif
#ifdef SFUD_USING_SFDP
sfud_sfdp sfdp;
#endif
} sfud_flash, *sfud_flash_t;
1.5.1 配置SFUD:
SFUD的核心功能配置文件在sfud_cfg.h,修改说明如下:
修改完了之后,还需要去修改刚刚复制替换的sfud_port.c文件,与刚刚填写的配置信息相对应:
至此,SFUD移植、配置完成,接下来介绍如何使用API接口!
1.5.2 API 说明:
- 初始化 SFUD 库:
将会调用 sfud_device_init ,初始化 Flash 设备表中的全部设备。如果只有一个 Flash 也可以只使用 sfud_device_init 进行单一初始化。
sfud_err sfud_init(void)
- 初始化指定的 Flash 设备
sfud_err sfud_device_init(sfud_flash *flash)
参数 | 描述 |
---|---|
flash | 待初始化的 Flash 设备 |
- 获取 Flash 设备对象
在 SFUD 配置文件中会定义 Flash 设备表,负责存放所有将要使用的 Flash 设备对象,所以 SFUD 支持多个 Flash 设备同时驱动。本方法通过 Flash 设备位于设备表中索引值来返回 Flash 设备对象,超出设备表范围返回 NULL 。
sfud_flash *sfud_get_device(size_t index)
参数 | 描述 |
---|---|
index | Flash 设备位于 FLash 设备表中的索引值 |
- Flash擦除/读写操作
① 读取Flash数据:
sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t *data)
② 擦除 Flash 数据:
sfud_err sfud_erase(const sfud_flash *flash, uint32_t addr, size_t size);
③ 往Flash写数据:
sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data);
sfud_err sfud_erase_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data)
1.6 应用示例:
通过调用sfud_init()对sfud初始化后,可以使用rtthread的sfud命令行对flash进行性能测试:
2.FAL
FAL (Flash Abstraction Layer) Flash 抽象层,是对 Flash 及基于 Flash 的分区进行管理、操作的抽象层,对上层统一了 Flash 及 分区操作的 API ,FAL 框架图如下:
从上图可以看出FAL抽象层位于SFUD框架的上层,可以将多个Flash硬件(包括片内Flash和片外Flash)统一进行管理,并向上层比如OTA层提供对底层多个Flash硬件的统一访问接口,方便上层应用对底层硬件的访问操作。我上篇文章介绍的FOTA就是在FAL层之上做的,理解了这篇文章,FOTA的底层就理解了。参考文章:STM32通用Bootloader——FOTA
2.1 主要特点:
- 支持静态可配置的分区表,并可关联多个 Flash 设备;
- 分区表支持 自动装载 。避免在多固件项目,分区表被多次定义的问题;
- 代码精简,对操作系统 无依赖 ,可运行于裸机平台,比如对资源有一定要求的 Bootloader;
- 统一的操作接口。保证了文件系统、OTA、NVM(例如:EasyFlash) 等对 Flash 有一定依赖的组件,底层 Flash 驱动的可重用性;
- 自带基于 Finsh/MSH 的测试命令,可以通过 Shell 按字节寻址的方式操作(读写擦) Flash 或分区,方便开发者进行调试、测试;
2.2 如何移植:
项目地址:https://github.com/RT-Thread-packages/fal
同样在移植过程中一定要参考两个资料:项目的readme文档和samples的移植说明。
对于使用rtthread完整版来说,对于使用者只需要勾选就可以了:
对于rtthread完整版的来说移植很简单,所以本次移植教程还是以rtthread nano为例,在上个移植完SFUD工程的基础上,继续移植FAL。
2.2.1 下载FAL项目源码,并添加到工程目录中;
2.2.2 定义 flash 设备
在定义 Flash 设备表前,需要先定义 Flash 设备。可以是片内 flash, 也可以是片外基于 SFUD 的 spi flash:
- 定义片内 flash 设备可以参考
fal_flash_stm32f2_port.c
。 - 定义片外 spi flash 设备可以参考
fal_flash_sfud_port.c
。
- FAL SFUD(W25Q64 Flash)移植
拷贝FAL项目samples\porting的fal_flash_sfud_port.c到工程中。
因为这个工程是在SFUD的基础上移植的,所以可以直接使用sfud的API接口:
- FAL MCU Flash移植
STM32片内Flash驱动,RT-Thread已经在libraries\HAL_Drivers \drv_flash\目录下提供了,可以根据芯片自行拷贝到工程:
本次演示项目使用的是STM32L431单片机,所以拷贝drv_flash_l4.c到工程中:
RT-Thread提供的内部flash驱动通过宏#define PKG_USING_FAL
向FAL提供的fal_flash_dev设备对象onchip_flash,包含了STM32L431片内Flash的参数及其访问接口函数:
在board.h中或者rtconfig.h中定义flash的参数:
#define STM32_FLASH_START_ADRESS ((uint32_t)0x08000000)
#define STM32_FLASH_SIZE (256 * 1024)
#define STM32_FLASH_END_ADDRESS ((uint32_t)(STM32_FLASH_START_ADRESS + STM32_FLASH_SIZE))
#define STM32_SRAM1_START (0x20000000)
#define STM32_SRAM1_END (STM32_SRAM1_START + 64 * 1024) // 结束地址 = 0x20000000(基址) + 64K(RAM大小)
2.2.3 定义 flash 设备表
Flash 设备表定义在 fal_cfg.h
头文件中,定义分区表前需 新建 fal_cfg.h
文件 ,请将该文件统一放在对应 BSP 或工程目录的 port 文件夹下,并将该头文件路径加入到工程。fal_cfg.h 可以参考 示例文件 fal/samples/porting/fal_cfg.h 完成。
设备表示例:
extern struct fal_flash_dev nor_flash0;
extern const struct fal_flash_dev stm32_onchip_flash;
#define FAL_FLASH_DEV_TABLE \ { \ \ &stm32_onchip_flash, \ &nor_flash0, \ }
Flash 设备表中,有两个 Flash 对象,一个为 STM32F2 的片内 Flash ,一个为片外的 Nor Flash。
2.2.4 定义 flash 分区表
分区表也定义在 fal_cfg.h
头文件中。Flash 分区基于 Flash 设备,每个 Flash 设备又可以有 N 个分区,这些分区的集合就是分区表。在配置分区表前,务必保证已定义好 Flash 设备 及 设备表。fal_cfg.h 可以参考 示例文件 fal/samples/porting/fal_cfg.h 完成。
分区表示例:
#define FAL_PART_TABLE \ { \ {FAL_PART_MAGIC_WROD, "app", "onchip_flash", 64*1024, 192*1024, 0}, \ {FAL_PART_MAGIC_WROD, "ef", FAL_USING_NOR_FLASH_DEV_NAME, 0 , 1024 * 1024, 0}, \ {FAL_PART_MAGIC_WROD, "download", FAL_USING_NOR_FLASH_DEV_NAME, 1024 * 1024 , 512 * 1024, 0}, \ {FAL_PART_MAGIC_WROD, "factory", FAL_USING_NOR_FLASH_DEV_NAME, (1024 + 512) * 1024 , 512 * 1024, 0}, \ }
用户需要修改的分区参数包括:分区名称、关联的 Flash 设备名、偏移地址(相对 Flash 设备内部)、大小,需要注意以下几点:
- 分区名保证 不能重复;
- 关联的 Flash 设备 务必已经在 Flash 设备表中定义好 ,并且 名称一致 ,否则会出现无法找到 Flash 设备的错误;
- 分区的起始地址和大小 不能超过 Flash 设备的地址范围 ,否则会导致包初始化错误;
至此,FAL移植完成,接下来介绍如何使用API接口!
2.3 如何使用:
API 说明:
查找 Flash 设备
const struct fal_flash_dev *fal_flash_device_find(const char *name)
参数 | 描述 |
---|---|
name | Flash 设备名称 |
return | 如果查找成功,将返回 Flash 设备对象,查找失败返回 NULL |
查找 Flash 分区
const struct fal_partition *fal_partition_find(const char *name)
参数 | 描述 |
---|---|
name | Flash 分区名称 |
return | 如果查找成功,将返回 Flash 分区对象,查找失败返回 NULL |
获取分区表
const struct fal_partition *fal_get_partition_table(size_t *len)
参数 | 描述 |
---|---|
len | 分区表的长度 |
return | 分区表 |
临时设置分区表
FAL 初始化时会自动装载默认分区表。使用该设置将临时修改分区表,重启后会 丢失 该设置
void fal_set_partition_table_temp(struct fal_partition *table, size_t len)
参数 | 描述 |
---|---|
table | 分区表 |
len | 分区表的长度 |
从分区读取数据
int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size)
参数 | 描述 |
---|---|
part | 分区对象 |
addr | 相对分区的偏移地址 |
buf | 存放待读取数据的缓冲区 |
size | 待读取数据的大小 |
return | 返回实际读取的数据大小 |
往分区写入数据
int fal_partition_write(const struct fal_partition *part, uint32_t addr, const uint8_t *buf, size_t size)
参数 | 描述 |
---|---|
part | 分区对象 |
addr | 相对分区的偏移地址 |
buf | 存放待写入数据的缓冲区 |
size | 待写入数据的大小 |
return | 返回实际写入的数据大小 |
擦除分区数据
int fal_partition_erase(const struct fal_partition *part, uint32_t addr, size_t size)
参数 | 描述 |
---|---|
part | 分区对象 |
addr | 相对分区的偏移地址 |
size | 擦除区域的大小 |
return | 返回实际擦除的区域大小 |
擦除整个分区数据
int fal_partition_erase_all(const struct fal_partition *part)
参数 | 描述 |
---|---|
part | 分区对象 |
return | 返回实际擦除的区域大小 |
打印分区表
void fal_show_part_table(void)
创建块设备
该函数可以根据指定的分区名称,创建对应的块设备,以便于在指定的分区上挂载文件系统
struct rt_device *fal_blk_device_create(const char *parition_name)
参数 | 描述 |
---|---|
parition_name | 分区名称 |
return | 创建成功,则返回对应的块设备,失败返回空 |
创建 MTD Nor Flash 设备
该函数可以根据指定的分区名称,创建对应的 MTD Nor Flash 设备,以便于在指定的分区上挂载文件系统
struct rt_device *fal_mtd_nor_device_create(const char *parition_name)
参数 | 描述 |
---|---|
parition_name | 分区名称 |
return | 创建成功,则返回对应的 MTD Nor Flash 设备,失败返回空 |
创建字符设备
该函数可以根据指定的分区名称,创建对应的字符设备,以便于通过 deivice 接口或 devfs 接口操作分区,开启了 POSIX 后,还可以通过 oepn/read/write 函数操作分区。
struct rt_device *fal_char_device_create(const char *parition_name)
参数 | 描述 |
---|---|
parition_name | 分区名称 |
return | 创建成功,则返回对应的字符设备,失败返回空 |
2.4 应用示例:
通过调用fal_init()对fal初始化后,可以使用rtthread的fal命令行进行性能测试:
FAL对分区进行读写测试:
联系作者:
欢迎关注本人公众号: