1D卷积入门:一维卷积是如何处理数字信号的

   日期:2020-05-26     浏览:123    评论:0    
核心提示:卷积是在科学、工程和数学中应用最广泛的运算符之一卷积是对两个函数(f和g)进行的一种数学运算,它产生的第三个函数表示其中一个函数的形状如何被另一个函数修改。离散时间信号的卷积一种求解离散时间信号卷积的简单方法如下所示输入序列x[n] ={1,2,3,4},其索引为{0,1,2,3}脉冲响应h[n] ={5,6,7,8},其索引为{- 2,1,0,1}蓝色箭头表示x[n]和h[n]的第0个索引位置。红色指针表示输出卷积索引的第零索引位置。我们可以构造一个表,如下所示。如图所示,将x和h的元素相乘人工智能

卷积是在科学、工程和数学中应用最广泛的运算符之一

卷积是对两个函数(f和g)进行的一种数学运算,它产生的第三个函数表示其中一个函数的形状如何被另一个函数修改。

离散时间信号的卷积


一种求解离散时间信号卷积的简单方法如下所示

输入序列x[n] ={1,2,3,4},其索引为{0,1,2,3}

脉冲响应h[n] ={5,6,7,8},其索引为{- 2,1,0,1}

蓝色箭头表示x[n]和h[n]的第0个索引位置。红色指针表示输出卷积索引的第零索引位置。我们可以构造一个表,如下所示。如图所示,将x和h的元素相乘,然后对角相加。

>> clc;  % clears the command window
>> clear all; % clears all the variables in the workspace
>> close all; % closes all the figure window

从用户那里获取输入

>> % x[n] is the input discrete signal.
>> x=input('Enter the input sequence x =');
>> nx=input('Enter the index of the input sequence nx=');
>> % h[n] is the impulse response of the system.
>>h=input('Enter the impulse response of the system,second sequence h=');
>> nh=input('Enter the index of the second sequence nh=');

输出

Enter the input sequence x =[1 2 3 4]
Enter the index of the input sequence nx=[0 1 2 3]
Enter the impulse response of the system,second sequence h=[5 6 7 8]
Enter the index of the second sequence nh=[-2 -1 0 1]

计算卷积信号的索引

>> % Index of the convolved signal
>> n=min(nx)+min(nh):max(nx)+max(nh);

卷积计算

>> y=conv(x,h);

显示

>> disp('The convolved signal is:');
>> y
>> disp('The index of convolved sequence is:');
>> n
>> The convolved signal is:y =5    16    34    60    61    52    32
>> The index of convolved sequence is:n =-2    -1     0     1     2     3     4

可视化

>> subplot(311);
>> stem(nx,x);
>> subplot(312);
>> stem(nh,h);
>> subplot(313);
>> stem(n,y);

时间序列信号的卷积

>> clc;
>> clear all;
>> close all;
>> t=-3:0.01:8;
>> x=(t>=-1 & t<=1); % pulse that exists for t>=-1 and t<=1
>> subplot(311);
>> plot(t,x);
>> h1=(t>=1 & t<=3); % pulse that exists for t>=1 & t<=3
>> h2=(t>3 & t<=4); % pulse that exists for t>3 & t<=4
>> h=h1+(2*h2);
>> subplot(312);
>> plot(t,h);
>> y=convn(x,h);
>> y=y/100;
>> t1=2*min(t):0.01:2*max(t);
>> subplot(313);
>> plot(t1,y);

卷积的属性

卷积是一个线性算子,具有以下性质。

交换律

x[n] * h[n] = h[n] * x[n] ( in discrete time )

x(t) * h(t) = h(t) * x(t) ( in continuous time )

结合律

x[n] * (h1[n] * h2[n]) = (x[n] * h1[n]) * h2[n] ( in discrete time )

x(t) * (h1(t) * h2(t)) = (x(t) * h1(t)) * h2(t) ( in discrete time )

分配律

x[n] * (h1[n] + h2[n]) = (x[n] * h1[n]) + (x[n] * h2[n]) ( in discrete time )

x(t) * (h1(t) + h2(t)) = (x(t) * h1(t)) + (x(t) * h2(t)) ( in discrete time )

标量乘法结合律

a(f * g) = (af) * g

乘法单位


复共轭性

与微分的关系

与积分的关系

应用程序

卷积在许多领域得到了应用,包括数字图像处理、数字信号处理、光学、神经网络、数字数据处理、统计学、工程学、概率论、声学等等。

作者:Sinchana S R

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服