5G NR原理与关键技术(帧结构、频谱划分、时频资源、物理信道与信号)

   日期:2020-05-23     浏览:1330    评论:0    
核心提示:1、理论知识5G核心网:5GC,5G基站:gNB4G核心网:5g

1、理论知识

5G核心网:5GC,5G基站:gNB

4G核心网:EPC,4G基站:eNB

如果把5G的基站接入到4G的核心网中,则构成核心网:EPC,基站:en-gNB

如果把4G的基站接入到5G的核心网中,则构成核心网:5GC,基站:ng-eNB

上行速率:是指移动终端给基站发送信息时的数据传输速率,比如手机、笔记本等无线终端给基站传输数据速率;

下行速率:是指基站向移动终端发送信息时的传输速率,比如手机或笔记本等无线终端从基站或者网络下载数据的速率。

2、NR原理与关键技术

(1)5G信道编码LDPC码和Polar码

  • LDPC码:应用于大数据方面,相比于turbo码更优。一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道。
  • Polar码:控制消息与广播信道。

(2)5G调制

(3)5G-Massive MIMO:多输入多输出

  多进多出(MIMO)是为极大地提高信道容量,在发送端和接收端都使用多根天线,在收发之间构成多个信道的天线系统。MIMO系统的一个明显特点就是具有极高的频谱利用效率,在对现有频谱资源充分利用的基础上通过利用空间资源来获取可靠性与有效性两方面增益,其代价是增加了发送端与接收端的处理复杂度。

(4)5G-天线输出

(5)5G-新波形

(6)5G-多址方式

(7)5G-天线端口

(8)5G-灵活双工技术

3、5G帧结构

(1)5G三大场景:eMBB、uRLLC、mMTC

  1. 超可靠低延迟通信(缩写URLLC),是3GPP定义的一种5G特性标准。该特性将被用于对时延和可靠性具有极高指标要求的工业、物联网应用场景。例如自动驾驶、智能电网、VR、工厂自动化等领域。5G技术中的 URLLC 特性还未实现商用。
  2. eMBB,增强移动宽带  ,是指在现有移动宽带业务场景的基础上,对于用户体验等性能的进一步提升。在3GPP RAN187次会议的5G短码方案讨论中,中国华为公司主推的Polar Code(极化码)方案,成为5G控制信道eMBB场景编码最终方案。
  3. mMTC,海量机器类通信(大规模物联网),主要用于人和物之间的信息交互。

(2)速率

                                                                          

  • C:信道容量    
  • B:带宽
  • :信噪比
  • C是数据速率的极限值,单位bit/s;B为信道带宽,单位Hz;S是信号功率(瓦),N是噪声功率(瓦)。
  • 当讨论信噪比时,常以分贝(dB)为单位。公式如下:SNR(信噪比,单位为dB)=10 lg(S/N)。

(3)时延

  1. 网站/应用的所在机房的网络质量;

  2. 本地宽带的网络质量;

  3. 从本地访问至网站所经过的节点数量;

(4)5G帧结构

  • 层结构:无线帧(1024)10ms — 子帧(1ms)— 时隙(n u,n值不确定)— OFDM符号(14个) 

4、5G频谱划分

(1)5G支持的频段

  5G NR中,3GPP主要指定了两个频率范围,一个6GHz以下,另一个是毫米波,分别称为FR1和FR2。

FR1 450MHz—600MHz
FR2 24250MHz—52600MHz

(2)5G支持带宽

Sub6G 毫米波
5M 50M
10M 100M
15M 150M
20M 200M
40M 400M
50M  
60M  
80M  
100M  

(3)运营商5G频率分配情况

  3.5G频段:

  4.9G频段:

  2.6G频段:

  覆盖能力优于3.5G。

5、5G NR时频资源

(1)5G 基本时频资源

  物理资源:无线帧、子帧、时隙-slot、基本时间单位、RE,RB,REG,CCE、OFDM符号。

  CP:循环前缀,用于多径干扰。

  RE:资源单元,对于每个天线端口p,一个OFDM符号上的一个子载波对应资源单元。

  RB:资源块,一个时隙中,频域上连续的12个RE为一个资源块。

  RG:物理资源组。

6、5G系统物理信道与信号

简称 下行物理信道与信号名称 功能简介
SS 同步信号 用于时频同步和小区搜索
PBCH 广播信道 用于承载系统广播消息
PDCCH 下行控制信道 用于上下行调度,功控等控制信令的传输
PDSCH 下行共享数据信道 用于承载下行用户数据
DMRS 解调参考信号 用于下行数据解调、时频同步等
PT-RS 相噪跟踪参考信号 用于下行相位噪声跟踪和补偿
CSI-RS 信道状态信息参考信号 用于下行信道测量,波束管理,RRM/RLM测量和精细化时频跟踪等

  PBCH:物理广播信道,调制方式:QPSK

  PDCCH:物理下行控制信道,调制方式:QPSK

  PDSCH:物理下行共享数据信道,调制方式:QPSK、16QAM、64QAM、256QAM、1024QAM

名称 上行物理信道与信号名称 功能简介
PRACH 随机接入信道 用于用户随机接入请求消息
PUCCH 上行公共控制信道 用于HARQ反馈,CQI反馈,调度请求指示等L1/L2控制信令
PUSCH 上行共享数据信道 用于承载上行用户数据
DMRS 解调参考信号 用于上行数据解调,时频同步等
PT-RS 相噪跟踪参考信号 用于上行相位噪声跟踪和补偿
SRS 测量参考信号 用于上行信道测量,时频同步,波束管理

  PRACH:随机接入信道,调制方式:QPSK

  PUCCH:上行公共控制信道,调制方式:QPSK

  PUSCH:上行共享数据信道,调制方式:QPSK、16QAM、64QAM、256QAM、1024QAM

 

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
更多>相关资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服