1. 题目
墙壁上挂着一个圆形的飞镖靶。现在请你蒙着眼睛向靶上投掷飞镖。
投掷到墙上的飞镖用二维平面上的点坐标数组表示。飞镖靶的半径为 r 。
请返回能够落在 任意 半径为 r 的圆形靶内或靶上的最大飞镖数。
示例 1:
输入:points = [[-2,0],[2,0],[0,2],[0,-2]], r = 2
输出:4
解释:如果圆形的飞镖靶的圆心为 (0,0) ,半径为 2 ,
所有的飞镖都落在靶上,此时落在靶上的飞镖数最大,值为 4 。
示例 2:
输入:points = [[-3,0],[3,0],[2,6],[5,4],[0,9],[7,8]], r = 5
输出:5
解释:如果圆形的飞镖靶的圆心为 (0,4) ,半径为 5 ,
则除了 (7,8) 之外的飞镖都落在靶上,此时落在靶上的飞镖数最大,值为 5 。
示例 3:
输入:points = [[-2,0],[2,0],[0,2],[0,-2]], r = 1
输出:1
示例 4:
输入:points = [[1,2],[3,5],[1,-1],[2,3],[4,1],[1,3]], r = 2
输出:4
提示:
1 <= points.length <= 100
points[i].length == 2
-10^4 <= points[i][0], points[i][1] <= 10^4
1 <= r <= 5000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-number-of-darts-inside-of-a-circular-dartboard
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
class Solution {
double cx, cy;//圆心坐标
public:
int numPoints(vector<vector<int>>& points, int r) {
int x1, x2, y1, y2;
double dx, dy;
int i, j, k, count, maxcount=1, n = points.size();
for(i = 0; i < n; ++i)
{
x1 = points[i][0];
y1 = points[i][1];
for(j = i+1; j < n; ++j)//i,j为圆上的点
{
if(i == j)
continue;
x2 = points[j][0];
y2 = points[j][1];
count = 2;
int d_d = (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
if(d_d > 4*r*r) continue;
count = 0;
cx = (x1+x2)/2.0-(y2-y1)*sqrt((r*r-d_d/4.0)/d_d),
cy = (y1+y2)/2.0+(x2-x1)*sqrt((r*r-d_d/4.0)/d_d);
for(k = 0; k < n; ++k)
{
dx = points[k][0]-cx;
dy = points[k][1]-cy;
if(dx*dx+dy*dy <= r*r)
count++;
}
maxcount = max(maxcount, count);
count = 0;
cx = (x1+x2)/2.0+(y2-y1)*sqrt((r*r-d_d/4.0)/d_d),
cy = (y1+y2)/2.0-(x2-x1)*sqrt((r*r-d_d/4.0)/d_d);
for(k = 0; k < n; ++k)
{
dx = points[k][0]-cx;
dy = points[k][1]-cy;
if(dx*dx+dy*dy <= r*r)
count++;
}
maxcount = max(maxcount, count);
}
}
return maxcount;
}
};
52 ms 8 MB