ES系列之利用filter让你的查询效率飞起来

   日期:2020-05-12     浏览:92    评论:0    
核心提示:bool查询简介Elasticsearch(下面简称ES)中的bool查询在业务中使用也是比较多的。在一些非实时的分页查询,导出的场景,我们经常使用bool查询组合各种查询条件。Bool查询包括四种子句,mustfiltershouldmust_not我这里只介绍下must和filter两种子句,因为是我们今天要讲的重点。其它的可以自行查询官方文档。must, 返回的文档必须满足must子句的条件,并且参与计算分值filter, 返回的文档必须满足filter子句的条件。但是跟Mus大数据

bool查询简介

Elasticsearch(下面简称ES)中的bool查询在业务中使用也是比较多的。在一些非实时的分页查询,导出的场景,我们经常使用bool查询组合各种查询条件。

Bool查询包括四种子句,

  • must
  • filter
  • should
  • must_not

我这里只介绍下must和filter两种子句,因为是我们今天要讲的重点。其它的可以自行查询官方文档。

  1. must, 返回的文档必须满足must子句的条件,并且参与计算分值
  2. filter, 返回的文档必须满足filter子句的条件。但是跟Must不一样的是,不会计算分值, 并且可以使用缓存

从上面的描述来看,你应该已经知道,如果只看查询的结果,must和filter是一样的。区别是场景不一样。如果结果需要算分就使用must,否则可以考虑使用filter。

光说比较抽象,看个例子,下面两个语句,查询的结果是一样的。

使用filter过滤时间范围,

GET kibana_sample_data_ecommerce/_search
{
  "size": 1000, 
  "query": {
    "bool": {
      "must": [
        {"term": {
          "currency": "EUR"
        }}
      ],
      "filter": {
        "range": {
          "order_date": {
            "gte": "2020-01-25T23:45:36.000+00:00",
            "lte": "2020-02-01T23:45:36.000+00:00"
          }
        }
      }
    }
  }
}

使用must过滤时间范围,

GET kibana_sample_data_ecommerce/_search
{
  "size": 1000, 
  "query": {
    "bool": {
      "must": [
        {"term": {
          "currency": "EUR"
        }},
        {"range": {
          "order_date": {
            "gte": "2020-01-25T23:45:36.000+00:00",
            "lte": "2020-02-01T23:45:36.000+00:00"
          }
        }}
      ]
    }
  }
}

查询的结果都是,

{
  "took" : 25,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1087,
      "relation" : "eq"
    },
    
    ...

filter比较高效的原理

上一节你已经知道了must和filter的基本用法和区别。简单来讲,如果你的业务场景不需要算分,使用filter可以真的让你的查询效率飞起来。

为了说明filter查询高效的原因,我们需要引入ES的一个概念 query contextfilter context

query context

query context关注的是,文档到底有多匹配查询的条件,这个匹配的程度是由相关性分数决定的,分数越高自然就越匹配。所以这种查询除了关注文档是否满足查询条件,还需要额外的计算相关性分数.

filter context

filter context关注的是,文档是否匹配查询条件,结果只有两个,是和否。没有其它额外的计算。它常用的一个场景就是过滤时间范围。

并且filter context会自动被ES缓存结果,效率进一步提高。

对于bool查询,must使用的就是query context,而filter使用的就是filter context

我们可以通过一个示例验证下。继续使用第一节的例子,我们通过kibana自带的search profiler来看看ES的查询的详细过程。

使用must查询的执行过程是这样的:

可以明显看到,此次查询计算了相关性分数,而且score的部分占据了查询时间的10分之一左右。

filter的查询我就不截图了,区别就是score这部分是0,也就是不计算相关性分数。

除了是否计算相关性算分的差别,经常使用的过滤器将被Elasticsearch自动缓存,以提高性能。

我自己曾经在一个项目中,对一个业务查询场景做了这种优化,当时线上的索引文档数量大概是3000万左右,改成filter之后,查询的速度几乎快了一倍。

我截了几张图,你来感受下。


可以看到时间整个缩短了一半。

总结

我们应该根据自己的实际业务场景选择合适的查询语句,在某些不需要相关性算分的查询场景,尽量使用filter context可以让你的查询更加高效。

 
打赏
 本文转载自:网络 
所有权利归属于原作者,如文章来源标示错误或侵犯了您的权利请联系微信13520258486
更多>最近资讯中心
更多>最新资讯中心
更多>相关资讯中心
0相关评论

推荐图文
推荐资讯中心
点击排行
最新信息
新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

13520258486

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服