目标:
本章节你需要学习以下内容:
- 我们将了解相机的畸变,相机的内部参数和外部参数等。
- 我们将学习如何找到这些参数,和对畸变图像进行修复等。
基础
如今市面上便宜的针孔摄像头会给图像带来了很多畸变。两种主要的畸变有两:径向畸变和切向畸变。
由于径向变形,直线会出现弯曲。当我们远离图像中心时,它的效果就会更加明显了。例如,下面显示了一个图像,其中棋盘的两个边缘用红线标记。但是你可以看到图像中边框不是直线而且与红线不重合。所有应该是直线的地方都变成突出的曲线。访问Distortion(光学)了解更多详情。
这种畸变可以通过下面的方程组进行纠正:
x d i s t o r t e d = x ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) x_{distorted} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) xdistorted=x(1+k1r2+k2r4+k3r6)
y d i s t o r t e d = y ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) y_{distorted} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) ydistorted=y(1+k1r2+k2r4+k3r6)
类似地,另一种失真是发生切向失真,因为图像拍摄镜头未完全平行于成像平面对齐。因此,图像中的某些区域可能看起来比预期的更近。它表示如下:
x d i s t o r t e d = x + [ 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) ] x_{distorted} = x + [ 2p_1xy + p_2(r^2+2x^2)] xdistorted=x+[2p1xy+p2(r2+2x2)]
y d i s t o r t e d = y + [ p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y ] y_{distorted} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy] ydistorted=y+[p1(r2+2y2)+2p2xy]
简而言之,我们需要找到五个参数,称为失真系数,由下式给出:
D i s t o r t i o n c o e f f i c i e n t s = ( k 1 k 2 p 1 p 2 k 3 ) Distortion \; coefficients=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3) Distortioncoefficients=(k1k2p1p2k3)
除此之外,我们还需要找到更多信息,比如摄像机的内部参数和外部参数。内部参数特定于相机。它包括焦距( f x , f y f_x, f_y fx,fy),光学中心( c x , c y c_x, c_y cx,cy)等信息。它也被称为相机矩阵,仅取决于相机,因此可以只计算一次,然后存储以备将来使用。它表示为3x3矩阵:
c a m e r a m a t r i x = [ f x 0 c x 0 f y c y 0 0 1 ] camera \; matrix = \left [ \begin{matrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{matrix} \right ] cameramatrix=⎣⎡fx000fy0cxcy1⎦⎤
外部参数对应于旋转向量和平移向量,它可以将3D点的坐标转换到坐标系中。
在 3D 相关应用中,必须要先校正这些畸变。为了找到这些参数,我们必须要提供一些包含明显图案模式的样本图片(比如说棋盘)。我们可以在上面找到一些特殊点(如棋盘的四个角点)。我们起到这些特殊点在图片中的位置以及它们的真是位置。有了这些信息,我们就可以使用数学方法求解畸变系数。这就是整个故事的摘要了。为了得到更好的结果,我们至少需要 10 个这样的图案模式。
代码实现
如上所述,我们至少需要 10 图案模式来进行摄像机标定。OpenCV 自带了一些棋盘图像(/sample/cpp/left001.jpg–left14.jpg), 所以我们可以使用它们。为了便于理解,我们可以认为仅有一张棋盘图像。重要的是在进行摄像机标定时我们要输入一组 3D 真实世界中的点以及与它们对应 2D 图像中的点。2D 图像的点可以在图像中很容易的找到。(这些点在图像中的位置是棋盘上两个黑色方块相互接触的地方)
那么真实世界中的 3D 的点呢?这些图像来源与静态摄像机和棋盘不同的摆放位置和朝向。所以我们需要知道(X,Y,Z)的值。但是为了简单,我们可以说棋盘在 XY 平面是静止的,(所以 Z 总是等于 0)摄像机在围着棋盘移动。这种假设让我们只需要知道 X,Y 的值就可以了。现在为了求 X,Y 的值,我们只需要传入这些点(0,0),(1,0),(2,0)…,它们代表了点的位置。在这个例子中,我们的结果的单位就是棋盘(单个)方块的大小。但是如果我们知道单个方块的大小(加入说 30mm),我们输入的值就可以是(0,0),(30,0),(60,0)…,结果的单位就是 mm。(在本例中我们不知道方块的大小,因为不是我们拍的,所以只能用前一种方法了)。
3D 点被称为 对象点,2D 图像点被称为 图像点。
设置
为了找到棋盘的图案,我们要使用函数 cv2.findChessboardCorners()。我们还需要传入图案的类型,比如说 8x8 的格子或 5x5 的格子等。在本例中我们使用的恨死 7x8 的格子。(通常情况下棋盘都是 8x8 或者 7x7)。它会返回角点,如果得到图像的话返回值类型(Retval)就会是 True。这些角点会按顺序排列(从左到右,从上到下)。
其他:这个函数可能不会找出所有图像中应有的图案。所以一个好的方法是编写代码,启动摄像机并在每一帧中检查是否有应有的图案。在我们获得图案之后我们要找到角点并把它们保存成一个列表。在读取下一帧图像之前要设置一定的间隔,这样我们就有足够的时间调整棋盘的方向。继续这个过程直到我们得到足够多好的图案。就算是我们举得这个例子,在所有的 14 幅图像中也不知道有几幅是好的。所以我们要读取每一张图像从其中找到好的能用的。
其他:除了使用棋盘之外,我们还可以使用环形格子,但是要使用函数cv2.findCirclesGrid() 来找图案。据说使用环形格子只需要很少的图像就可以了。
在找到这些角点之后我们可以使用函数 cv2.cornerSubPix() 增加准确度。我们使用函数 cv2.drawChessboardCorners() 绘制图案。所有的这些步骤都被包含在下面的代码中了:
import numpy as np
import cv2 as cv
import glob
# termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('*.jpg')
for fname in images:
img = cv.imread(fname)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv.findChessboardCorners(gray, (7,6), None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)
# Draw and display the corners
cv.drawChessboardCorners(img, (7,6), corners2, ret)
cv.imshow('img', img)
cv.waitKey(500)
cv.destroyAllWindows()
其上绘制有图案的一幅图像如下所示:
标定
在得到了这些对象点和图像点之后,我们已经准备好来做摄像机标定了。
我们要使用的函数是 cv2.calibrateCamera()。它会返回摄像机矩阵,畸变系数,旋转和变换向量等。
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
畸变矫正
现在我们找到我们想要的东西了,我们可以找到一幅图像来对他进行校正了。OpenCV 提供了两种方法,我们都学习一下。不过在那之前我们可以使用从函数 cv2.getOptimalNewCameraMatrix() 得到的自由缩放系数对摄像机矩阵进行优化。如果缩放系数 alpha = 0,返回的非畸变图像会带有最少量的不想要的像素。它甚至有可能在图像角点去除一些像素。如果 alpha = 1,所有的像素都会被返回,还有一些黑图像。它还会返回一个 ROI 图像,我们可以用来对结果进行裁剪。
我们读取一个新的图像(left2.ipg)
img = cv.imread('left12.jpg')
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
使用 cv2.undistort() 这是最简单的方法。只需使用这个函数和上边得到的 ROI 对结果进行裁剪。
# undistort
dst = cv.undistort(img, mtx, dist, None, newcameramtx)
# crop the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
cv.imwrite('calibresult.png', dst)
使用 remapping 这应该属于“曲线救国”了。首先我们要找到从畸变图像到非畸变图像的映射方程。再使用重映射方程。
# undistort
mapx, mapy = cv.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5)
dst = cv.remap(img, mapx, mapy, cv.INTER_LINEAR)
# crop the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
cv.imwrite('calibresult.png', dst)
两种方法都给出了相同的结果。 请看下面的结果:
mean_error = 0
for i in xrange(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error
print( "total error: {}".format(mean_error/len(objpoints)) )
你会发现结果图像中所有的边界都变直了。
现在我们可以使用 Numpy 提供写函数(np.savez,np.savetxt 等)将摄像机矩阵和畸变系数保存以便以后使用。
反向投影误差
我们可以利用反向投影误差对我们找到的参数的准确性进行估计。得到的结果越接近 0 越好。有了内部参数,畸变参数和旋转变换矩阵,我们就可以使用 cv2.projectPoints() 将对象点转换到图像点。然后就可以计算变换得到图像与角点检测算法的绝对差了。然后我们计算所有标定图像的误差平均值。
mean_error = 0
for i in xrange(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error
print( "total error: {}".format(mean_error/len(objpoints)) )